Maruf Bepary, 2023

Final Year Project Report

Full Unit — Final Report

ADVANCED WEB DEVELOPMENT

Maruf Bepary

A report submitted in part fulfiiment of the degree of
BSc (Hons) in Computer Science

Supervisor: Dr Georgios Koutsoukos

ROYAL

HOLLOWAY

Department of Computer Science

Royal Holloway, University of London

June 15, 2023



Discussion Platform Maruf Bepary

Declaration

This report has been prepared on the basis of my own work. Where other published and
unpublished source materials have been used, these have been acknowledged.

Word Count: 28862

Student Name: Maruf Bepary

Date of Submission: 31/03/2023

Signature: MARUF



Discussion Platform Maruf Bepary

Table of Contents

Final Year Project RepPoOrt........ceiiiiivniicsisnnicnssnnecssnsncsssnssecsssssesssssssncssanss 1
ADVANCED WEB DEVELOPMENT ......ccccoevinvnninrensnnsessesssnssessasssessssssessssanes 1
MaAruf BePary...cccccccceiiccnissnniccssssnsnnccsssssssressssssssnesssssssssssssssssssssssssssssssssssssssssssssss 1

LAY <1 1 T o PR 6

Project SpecifiCatioN.......eeiiencceiiiiisnriisisnicnissnnicsssnnnecsssnsecssssssncssssseessssssnssnnes 7

Chapter Li....iiineiiineecnsneicsnensssnecsssnncsssnsssssnesssssssssssssssesssssssssane Introduction

9

1.1  Problems & ODJECLIVES ....ceiiirivrnriiiisissnnriccsissnsnccsssssssnscssssssssesssssssssnsssssnnss 9
1.2  Aims & Goals of the Project.....iiciivcvnriccsissnniccssssnnnccssssnsnecsssssnssnces 10
RS T 2611 11) 1 B 1 (TN 11
1.4 Survey of Related SyStemS......cccevvvurriccsssranriccsssssnsrecssssssssscsssssssssssssssssssces 13
Ti4. 1 QUOTA ..ottt ettt et et eere e e eneeereas 13
T.4.2 DISCOTA. ...ttt ettt e veeeae e eve e 14
T DY) G 1) o (R 14
Chapter 2:.......oueeeveicvneecsnnecssnnecsneccsseecnnns Technologies (Web Frameworks)

17
2.1 Back-End Technologies...........ccccecevcvnrricssssnnrcccsssnsnecsssssssssssssssssssssssnsses 17
2.1.1 Current System based on Firebase..........ccccceevverienieeieeiieeieeeeieeieene 17
2.1.2 Previous System based on Flask (Python) ..........ccccocvevievienieninnienen. 18
2.1.3 Supabase as an Alternative to Firebase..........cccoevvevverieeciiecieeieeieee, 18
2.2 Front-End Technologies ...........ciiinnceicninnicssnninssnnicsssnnicsssssssssssssssssnns 21
2.2.1 ReACt LIDTATY ..ocviiviiciiiciieceee ettt 21
2.2.2 Component Libraries for Both Systems..........ccccceevvevirieniniinienieees 21
2.2.3 Next.JS Compared to Regular React...........cccoeeveeeiieiieiiciiiciecee, 22
2.2.4 State ManagemeNt..........c..ccveerueerreereesieeseeeneeseeeseeseeeseeseeseesseeseesseenns 22
2.2.5 Alternative JavaScript Ul Libraries and Frameworks........................... 24
2.3 DatabDase ....uuueeieiininniiiiiinnntininnttiiiintieiesssntttessssssstttsssssssstssssssssssssssssns 25
2.3.1 Relational Database used on First Prototype.........cccccvvevvvevieecieenreenenne. 25
2.3.2 Non-Relational Database using on Final System............c.ccccceveevveennnen. 26
(01 ) =T o1 =T i T Software Engineering

27



Discussion Platform Maruf Bepary

3.1  Methodology ....cciiiiiiiinnniiiisissnniiccssssnsnecssssssssncssssssssncssssssssssssssssssssssssssss 27
BT AGILE oot 27
3.1.2 Waterfall......coveiieiiieee e 28

3.2 TeStINGuuuueeriiiriisnnricssssnnrnccsssssssnecsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 29
3.2, UNIt TESTINZ ..veevieieiieiieeieeie ettt ettt ettt ssee e snaesenas 30
3.2.2 USCT TESHING ..uveeevieiieiecieeeieecteestt ettt e eveeaeereeseeseeveesveeneens 31

3.3 Version Control SYStEM .......cccovvvnericssssnnreccsssssnsrecssssssssscsssssssssssssssssssses 40
K Tt € 5 OO OO TRORSPSRP 40
3.3.2 REIMOLES ..oovvievieniieiieieetieieeie ettt ettt esseena s e 41

3.4  Code QUALILY ..cccovvvnriicisnssnnriccsssssnriecssssssssscsssssssssssssssssssssssssssssssssssssssssssase 43
3.4 LANTING c.veeviiiieciieeiiecee ettt et re et et e e e s saeeaaeesbeesseenseennas 43
3.4.2 UNit TESLING ...cuviiiiieeiiieeiieeiee ettt ettt et e et eabe e eaaeesaneeeaneas 44
3.4.3 Code ATChItECIUIE.....c..eevieuiiiieiieieeete ettt 44
3.4.4 Code Refactoring........c..cccveeevieeiiieeiieeiee ettt 45
3.4.5 Code DOCUMENIAtION .....cuivuieieiieiieieeeeie st 46
3.4.6 Design PatternsS........cooviiiuiiiiiieeieceieccieceee et 46

3.5  Organising TasKS.......ccuiiinisriisiseninsssnncnssnnicssssnicsssnessssssssssssssssssssssssesses 47

£ TN ) T3 1) (0% 11 T3 1 L TP 49

Chapter 4:.......iiueecneeicnnecnsnnecssnnccssecssssncsssscsnns End System Development
50

4.1 Architecture of End SySteml.....cccouveiiiciiivneiiccsissnnriccssssnnsnccssssssssssssssssssecs 50
4.1.1 Design PatternsS.......c.ccoveiiieiieiieiecie ettt 50
4.1.2 Diagram Detailing Architecture of the Whole System............ccccu...... 56

4.2  Database DeSi@N......cccceeiirieriissnnicssnnicssnnissssnncssssesssssssssssssessssssssssssssssssss 58
4.2.1 Relational Database (SQL)........oovvvieviiiiieeieeeeceeeeee e 58
4.2.2 Non-Relational Database (NOSQL)........cccccoiieiiiiiiieiieeie e 63

4.3 Features of the End SyStemM.........cccoeeiiiiniiinsnnicnssnnicssneicssnnncsssssecssnssesaes 66
4.3.1 Authentication and Account Management.............c.cccceeeeveeveeneeneenneenn. 66
4.3.2 COMMUINILY ....oeeivriiiieeeeieeeteeeree et e eveeereeeaeeeereeereeeaeeeaeeeeseeeesseeenseennns 68
4.3.3 POSES .ottt ettt ettt ettt nteae e 70
4.3.4 COMIMENES......eiitieniiiieiieteetiete ettt ettt ettt et e sttt ebe st et e sseeneenaeens 74

4.4 Future Enhancements .........coeieecineennssnencnsnencssnnecsssseecsssescssssessssseccsns 81

4.5 Running the Site.......coiicriviicssrrinssnnicsssnicsssnnisssssessssssssssssssssssssssssssssnss 82



Discussion Platform Maruf Bepary

(01 - To 1 =T Assessment & Evaluation
83

5.1 Profession Considerations for this Project..........cccceccvvericcsssvnnercccscnnnes 83
5.1.1 Security & PrivaCY......cccoeevieiiieiieiiesieesieesieese ettt 83

5.4 2 LAl oo 83
5.1.3 EhiCal..c..oiviieiieiece e 84
5.1.4 Improvements for the Current SyStem............cccoeeveeierieeieeieeiecieenea, 84

5.2 DHATY uueeiiiiiiirnniiccsssnniecssssnssessssssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssns 86
5.2.1 AUGUSE 2022ttt ettt sre e e raen 86
5.2.2 September 2022 .......ccviiiiieeiie et 86
5.2.3 OCtODET 2022.....uiiiiieiieeiiieie ettt ettt ettt ennas 86
5.2.4 NoVembET 2022.......cccouiiiiieeiie ettt ere e e 86
5.2.5 December 2022........couiiiiieiieieeieeeeeee et 87
5.2.6 January 2023 ........oooieieieeeeee et b e 87
5.2.7 February 2023 .......couiiiiiiieeieeeeeeeeeeeee ettt 87
5.2.8 March 2023 ......ooiieieieecieeeeeeeee et e 89

CTRC T 2 DAY 1 L1 T2 11 1) | 90
Chapter B:....cccvveeiciisnnnicsssnnicsssnnsicssnssesssssssssssssssssnssssssens Project Management

91

6.1 Risks and MitigationS.......cccevvveriiccssrnnricssssnnrecssssssssscssssssssssssssssssssssssnssss 91
Bibliography.....cccccicnneriiccsssssnnniecssssssnnsnscssssssssssssssssssssssssssssssssssssssssssssssssssssss 93



Discussion Platform Maruf Bepary

Abstract

In today's world, the internet has become a hub for communication and information exchange.
People from all over the world can connect and share their ideas, opinions, and experiences.
However, with the abundance of information, it can be difficult for individuals to find a platform
where they can connect with like-minded individuals and engage in meaningful discussions. For
instance, a passionate environmentalist might struggle to find a space where they can connect with
others who share their concerns about climate change and renewable energy.

To address this issue, the following report outlines the design and implementation of a platform
that aims to connect people with similar interests, allowing them to carry out relevant discussions.
The platform provides a space for users to form communities around common topics or themes,
building a sense of community among them and fostering engagement and participation on the
platform. This could lead to more informed and thoughtful conversations about important topics,
such as mental health, political activism, or scientific research.



Discussion Platform Maruf Bepary

Project Specification

Authentication and Account Management

The system has several key user authentication and account management features designed to
ensure that users have a seamless and secure experience:

Users can sign up using email and password

Users can sign up using third-party authentication providers such as Google and GitHub
Users can log in using email and password

Users can log out

Users can reset their password

Users can modify their profiles (profile image and username)

Community

The system has several key community management features designed to promote engagement and
collaboration among users:

e Users can create communities (different types)

e Users can subscribe and unsubscribe to and from a community

e Admins can change or delete the community logo

e Admins can change community visibility

e Users can view and navigate to all public and restricted communities
Posts

The system has several key features designed to make it easy for users to create and view posts
within communities:

Users can create a post in a specific community with an optional image
Users can view all posts from a community

Users can open post to interact with them

Users can view posts from subscribed communities

Users can delete a post they have created

Users can vote on a post

Users can share a post

Comments

The web application has several key features designed to make it easy for users to engage with
others by creating and viewing comments:

e Users can create a comment to reply to a post
e Users can view comments in a post
e Users can delete a comment they created

General
The system has several general features to make the site user-friendly and accessible:

e Logged-in users can view posts from various communities they are subscribed to in the
home feed
e Logged-out users can view posts from all communities in order of likes



Discussion Platform Maruf Bepary

e System Ul is responsive, hence it can be used on smartphones, tablets, or computers



Discussion Platform Maruf Bepary

Chapter 1: Introduction

1.1 Problems & Objectives

One of the core values of the platform is to facilitate the sharing of knowledge and information
[1][2]. Users can ask for help and receive assistance in solving issues, as others who have already
experienced it can provide answers and share their expertise on various topics [1]. These
discussions can be neatly collected in their respective communities, making it easier for users to
find the information they need. For example, someone who needs help with a maths problem can
ask in a Maths community, where mathematicians can provide help [1].

Another key aspect of the platform is learning. Users can learn about different topics or subjects
they are interested in from others, or inform others about their expertise [1][3]. The platform
provides a way for users to learn from one another, collecting learning material and discussions in
its own community [1][3]. For example, someone who needs help with development can ask for
help in a development-related community.

The platform also facilitates the sharing of knowledge, resources, and ideas with other users,
providing a way for users to gain new insights and perspectives on various topics [1][3].
Additionally, the platform allows for discussions to take place regardless of a user's background,
helping everyone to get involved and learn from the discussions they take part in [4]. Participating
in discussions is far more engaging than just reading about them.

In today's society, it is not uncommon for individuals to face personal attacks for their opinions. To
mitigate this, the platform allows users to express their opinions without fear of being attacked, as
personal information is not allowed on the platform [4]. People should not be personally attacked
or even worse, physically attacked for their views. For example, if someone has strong political
views which other people do not agree with, the user should not be attacked on the platform or be
tracked down.

The platform allows users to create groups of private communities where only specific trusted
people can join. This allows users to discuss certain topics only with people they trust, providing a
secure space for private discussions [1].

Finally, the platform's open-source nature promotes transparency between the users and the
platform [5]. This means that users can be assured that the platform operates ethically and that
there are no hidden agendas or unethical practices [5]. Unlike many social media platforms that
prioritize maximizing screen time at the expense of the user or invade users' privacy [6], this
platform is designed to foster a sense of community and facilitate meaningful discussions. The
open-source nature of the platform also enables users to provide feedback and contribute to the
platform's development themselves [5]. This reflects the overall purpose of the platform, as the
discussions are meant to be open, and the platform promotes collaboration. Open-source projects
are inherently collaborative, and the platform aims to bring people together to learn from one
another and work on projects together [5].



Discussion Platform Maruf Bepary

1.2 Aims & Goals of the Project

The project aims to create a platform that facilitates discussions and knowledge sharing between
like-minded people via communities that encapsulate specific topics [1]. The importance of this
goal lies in enabling users to find relevant and focused information, fostering productive exchanges
and helping users learn from each other [1]. By providing a space where users can ask for help and
solutions from other users in specific communities, the platform makes it easier to connect with
people who share similar interests and expertise [2].

The platform also aims to make learning more accessible by allowing people to join communities
of like-minded individuals to learn about topics they are interested in but have minimal background
knowledge about [4]. This goal is important because it encourages lifelong learning, personal
development, and skill-building [2]. For instance, someone who is trying to learn about
programming can join a programming community to gain a better understanding of the field [3].

Another aim of the platform is to create a safe environment for users to express their opinions
without fear of being personally attacked or harassed [4]. This goal is crucial as it promotes a
healthy and respectful online community, enabling users to offer controversial opinions in debate-
heavy communities without fear of personal attacks [4]. By not allowing personal information,
such as names, dates of birth, and addresses on the platform, users can confidently share their ideas
and participate in intense discussions [4].

Additionally, the platform allows groups of friends to join small private communities where they
can carry out discussions [3]. This feature is important as it creates a secure space for private
conversations, catering to users' needs for privacy and trust [4]. These private communities can
serve various purposes, such as revision groups, hanging out places, or more organized group chats,
and further enhance the platform's value as a versatile tool for different types of interactions [1].

For instance, a platform user interested in gardening could join a gardening community, where they
could ask questions about plant care, share tips on growing specific plants, and discuss sustainable
gardening practices. Users could also join communities related to career fields they aspire to enter,
such as data science, to network with professionals and learn from their experiences.

10



Discussion Platform Maruf Bepary

1.3 Rationale

The primary rationale behind a forum site is to create an online space for users to share, discuss,
and discover information [1]. This project is built around the idea of community and encourages
users to participate in meaningful conversations and discussions [3]. The platform allows users to
post content and vote on it, allowing the community to decide what content is most valuable [3].
This helps create an environment where people can learn from one another, share their opinions,
and get feedback from other users [3].

Related topics are encapsulated within certain communities where certain topics are discussed.
Communities help to organize content and make it easier for users to find the topics they are
interested in [3]. Communities also help foster a sense of belonging and allow users to connect with
others who share similar interests [3]. Communities are also designed to provide a safe, welcoming
environment for users to engage in meaningful conversations and discussions [3]. By having a
variety of communities, the project creates a platform where users can explore new topics and
interests, find like-minded people, and have meaningful conversations [3]. Without communities,
topics would be very messy and hard to find, as more people are in a bigger pool, it would be
harder to find like-minded people, there would also be much more irrelevant content, and it would
overall provide a worse user/social experience [2].

People should be able to join communities and participate in discussions in a safe and organized
manner [4]. It should encourage people to learn about different topics and share opinions with other
people who are passionate about their interests [4]. This platform can also be used by friends and
colleagues as a useful tool, for example as study groups which would allow for seamless
collaboration, learning, and growth [4]. People must feel safe on this platform [4].

People should be able to join communities and participate in discussions in a safe and organized
manner. This is crucial for ensuring that users feel comfortable and confident when using the
platform. A safe and organized environment will encourage users to engage in discussions, share
their opinions, and learn about different topics. This, in turn, will lead to a thriving community
where users can connect with others who share similar interests and learn from one another.

As personally identifiable information is not stored in the database, it is almost impossible for
someone to be identified individually [4]. This facilitates controversial discussions as people can
discuss topics without the fear of being abused [4]. Without having access to personal information
such as names, date of birth, home address, etc, it is almost impossible to determine who the user
is. This makes the platform more private.

Communities can also be private (invite only) where only certain trusted people can join [2]. This
eliminates the fear of having irrelevant discussions with outsiders [2]. Additionally, it also allows
for participating in more private or more controversial discussions which should not be known by
outsiders [2]. Furthermore, it can also facilitate learning as users can potentially create revision
groups that are organized by posts [1]; for example, each post can be a question from a revision
sheet making it easier to discuss in an organized manner and refer back.

Finally, the open-source nature of the platform ensures that the platform operates ethically and
transparently [5]. This allows users to contribute to the development of the platform and offer
feedback, ensuring that the platform evolves to meet the needs of the community it serves [5]. This
collaborative approach to platform development reflects the overall purpose of the platform, which
is to bring people together to learn from one another and work on projects together [5].

An example of how communities can help organize content and facilitate meaningful discussions is
a community dedicated to discussing literature [2]. In this community, users can discuss specific
books, authors, and genres, as well as share their favourite quotes, analyses, and interpretations [2].
By having a dedicated space for literature enthusiasts, it would be easier for users to find relevant
content and engage with others who share their passion [2].

11



Discussion Platform Maruf Bepary

Potential challenges and limitations of the platform could include managing the influx of
information and ensuring the quality of content shared by users. As the platform grows, it may
become difficult to maintain a sense of community, and users may feel overwhelmed by the sheer
volume of content. Additionally, moderation and community management would be crucial to
prevent the spread of misinformation and maintain a respectful environment. This could require
significant resources and collaboration between users and platform administrators.

Another potential limitation could be related to the privacy of users. While the platform aims to
protect user privacy by not storing personal information, ensuring complete anonymity may be
challenging. Users may inadvertently reveal personal details through their posts or interactions,
which could lead to privacy concerns.

Moreover, the open-source nature of the platform may present challenges in terms of security and
maintenance [7]. Ensuring that the platform remains secure while being open to contributions from
the community may require continuous monitoring and evaluation of the codebase to prevent
vulnerabilities or malicious activities [7].

By considering these potential challenges and limitations, the platform can be better equipped to

address and overcome these issues, ensuring a more successful implementation and user
experience.

12



Discussion Platform Maruf Bepary

1.4 Survey of Related Systems

This section is an analysis of existing online platforms that are similar in nature to the proposed
project. In this section, the similarities and differences between the proposed project and other
popular online platforms such as Quora and Discord are compared and evaluated. The aim is to
understand the strengths and weaknesses of these existing platforms and to identify areas where the
proposed project can improve or differentiate itself. By conducting a thorough analysis of related
systems, the proposed project can learn from the successes and failures of existing platforms and
create a unique and effective solution that meets the needs of its target audience.

1.4.1 Quora

Quora is a platform where people can ask and answer questions on a variety of topics [8]. It aims to
provide high-quality and relevant answers from experts and enthusiasts [8]. Users can follow
topics, people, or questions that interest them and see personalised content on their feeds [8]. Quora
also allows users to upvote, comment, share, and edit answers [8].

Quora and this project are both online forum sites that allow users to discuss related topics, ask and
answer questions, and interact with other users. However, there are several differences between the
two websites that set them apart from each other.

Differences

One of the main differences between the two websites is the user interface. Quora has a more
cluttered user interface with several unnecessary features such as 3D avatars and stickers, which
can create distractions for users [9]. In contrast, this project has a simpler user interface that is more
focused and user-friendly, making it easier for users to navigate and find relevant content. This
project also has a more specific target audience, as it is designed for a specific niche or community,
while Quora is more general and open to a wider range of topics and discussions [8].

Another difference between the two websites is the privacy settings. Quora provides more
information about users such as their full name, when they joined the service, what spaces they are
subscribed to, site usage, etc [10]. On the other hand, this project does not include personally
identifiable information, and users can only view the username and profile picture of the user,
making it harder to track users. This project also allows for greater customization of communities,
with the ability to create private or restricted communities, while Quora does not have this feature

[8].

Another difference between Quora and this project is the ability to modify posts or comments [8].
Unlike Quora, this project does not allow users to edit their posts or comments after they have been
published. This is because there are ethical considerations around editing content after it has been
published, as it can lead to a lack of transparency and accountability for what has been said or
written [11]. Allowing users to modify their posts or comments can also create confusion for other
users who may have read the original content and may not be aware of any changes that have been
made [11].

This project does not have moderation yet, while Quora has a moderation system where moderators
can review and remove content that violates community guidelines. Additionally, this project will
be open source, allowing for more transparency between users and the platform and allowing the
community to improve and collaborate on it, while Quora is not open source.

Similarities

Both Quora and this project have a voting system where users can upvote or downvote posts, which
can help determine the relevance and popularity of a post [8].

13



Discussion Platform Maruf Bepary

In terms of functionality, both Quora and this project allow users to post multimedia content such
as images and have a search function where users can search for specific topics or posts [8].
However, this project does not allow messaging other users directly as it is not a messaging
platform, while Quora allows users to follow other users.

Overall, while Quora and this project are both online forum sites for discussion and question-and-
answer platforms, they have several differences in terms of the user interface, privacy settings,
functionality, and target audience. This project is more focused, user-friendly, and customizable,
while Quora is more general, cluttered, and has a wider range of topics and discussions.

1.4.2 Discord

Discord is a platform that allows users to communicate with each other through text, voice and
video chat [12]. Users can create or join servers that are dedicated to specific topics, interests or
communities [12]. Discord also offers various features such as bots, emojis, stickers and
integrations with other applications [12]. Discord is popular among gamers, streamers, content
creators and online learners [12].

Discord and this project are very different types of platforms. Discord is a communication
platform that allows users to communicate with each other through text, voice, and video chat,
while this project is a forum site that allows users to discuss related topics, ask and answer
questions, and interact with other users.

Similarities

One similarity between the two platforms is the communities feature in this project, which is very
similar to servers in Discord. Both allow users to create or join communities that are dedicated to
specific topics, interests, or communities [12]. This allows users to connect with others who share
similar interests and engage in discussions and interactions [12].

Another similarity between the two platforms is the comments within posts in this project, which
are similar to chats within channels in Discord. Both allow users to participate in discussions and
exchange information with others [12]. However, this project does not have nested comments,
similar to how there are no nested messages in Discord [12].

Differences

Despite these similarities, there are several differences between Discord and this project. Discord
includes chat features such as emojis, stickers, and integrations with other applications, while this
project does not include chat features as it is not a chatting platform [12]. Discord also includes
calling features, allowing users to make voice and video calls with each other [12], while this
project does not include calling features as it is not a calling platform. Additionally, Discord
includes automated bots, which can perform various tasks, while this project does not include bots.

Another difference between the two platforms is the categorization of content. Discord has sub-

categories for channels, which are groups of channels, while this project does not have sub-
categories for tags [12].

14



Discussion Platform Maruf Bepary

1.5 User Stories

User stories are short descriptions of a feature or a functionality from the perspective of an end
user. User stories are important because they help to define the value and scope of a product,
communicate the needs and expectations of the users, and prioritize the development tasks based

on their relevance and impact.

These user stories describe the functionalities of the end system. Almost all the functionalities
described here have been implemented (see Features of the End System section). They are each

assigned a priority which helps develop the most important functionality first:

1. Most Important

2. Medium Importance

3. Least Important / Optional
General

e As a user, [ want to be able to participate in discussions without being distracted by side

features (2)

e Asauser, I want to be able to participate in discussions openly without being attacked (1)

As auser, I want to be able to use the system in any platform (1)
e Asauser, I want to be able to modify my account to create a personalised profile. (3)

Authentication

e As a user, | want to be able to create an account and log into the site to interact with my

favourite communities (1)

e As a user, [ want to be able to create an account quickly and easily to participate in

discussions with minimal friction

Communities

e Asauser, [ want to be able to create a community to be able to discuss about topics I am

interested in with other people given a community does not already exist (1)

e As a user, | want to be able to find a community to be able to join in discussions I am

interested in (1)

e Asauser, [ want to be able to subscribe to a community to be able to discuss about topics I

am interested in with other people given a community already exists (1)

e As a user, | would like to be able to unsubscribe to a community if I am no longer

interested in taking part in discussions (1)

e Asauser, [ want to be able to create private communities where only people I decide can

join (2)

e As a creator of a community, I want to be able to change the logo of the community to

make it more appropriate a convey the purpose of the community (3)

e As a creator of a community, I want to be able to change the visibility of the community if
I no longer want the discussion to be available for everyone or if I want a public

community discussion to become public. (3)

Posts

e As a user, I want to be able to create a post to discuss a topic with other people in the

community (1)

e As a user, I want to be able to add images to posts to convey information that would be

difficult to convey with just text. (1)

15



Discussion Platform Maruf Bepary

e Asauser, I want to be able to delete a post if I think this discussion should not longer take
place (2)

e Asauser, | want to be able to delete a post if | feel like it is irrelevant (2)
As a user, [ want to be able to like or dislike a post based on the relevance or usefulness of
apost (1)

e As auser, I would like to be able to save certain posts in case I need to refer back in the
future (3)

e Asauser, I would like to tag posts so that they can be found more easily. (3)
As auser, I would like to share a post to invite other people into the discussion. (1)

Comments

e Asauser, [ want to be able to reply to posts to offer my views on a specific post and start a
discussion (1)

e As auser, | want to be able to reply to other comments to offer views on a comment made
for a post (2)

e Asauser, [ want to be able to delete a post if I no longer want to be part of the discussion

2
Profile Management

o As a user, I would like to edit some of my profile information such as username or
password in order to keep my account secure or if I no longer like the current username (3)

16



Discussion Platform Maruf Bepary

Chapter 2: Technologies (Web Frameworks)

2.1 Back-End Technologies

The backend of a web app is the part that runs on a server and handles the logic, data storage and
communication of the app [13]. The backend is responsible for processing user requests, interacting
with databases and APIs, and sending responses to the frontend (the part that runs on a browser and
displays the user interface) [13]. The backend is important because it enables complex
functionality, security and scalability of a web app [13]. Without a backend, a web app would be
limited to static content and simple interactions that do not require any data manipulation or
verification [13].

2.1.1 Current System based on Firebase

Introduction to Firebase

Firebase is a Backend-as-a-Service (BaaS) platform that provides developers with a suite of tools
for building and managing web and mobile applications [14][23]. Firebase offers a range of
services including real-time databases, authentication, hosting, storage, and more [15]. These
services can be integrated into web or mobile applications with just a few lines of code, allowing
developers to focus on building the core functionality of their applications rather than worrying
about managing the backend and making sure it is secure and reliable [15]. Firebase is known for
its ease of use, scalability, and real-time capabilities, making it a popular choice among developers
for building and deploying dynamic and fast-paced applications [15].

Services and Tools Offered by Firebase

Firebase offers a suite of services that can be used to build, manage and scale applications. Some of
the key features of Firebase include real-time database, authentication, hosting, cloud functions,
storage, and machine learning [16]. The real-time database provides a way to store and retrieve
data in real time, which is ideal for real-time applications such as chat apps and multiplayer games
[16]. The authentication service provides a way to authenticate users using email, phone number or
social media logins [16]. The hosting service provides a way to host and serve web content [16].
The cloud functions service provides a way to run backend code in response to events triggered by
Firebase features and HTTPS requests [16]. The storage service provides a way to store and serve
files such as images, videos and audio. The machine learning service provides a way to build and
train machine learning models [16]. With these services and tools, Firebase provides a complete
solution for building and deploying web and mobile applications [16].

Use in the Project

The current system uses Firebase for its back-end services. Firebase is easy to start with as it
provides many tools such as authentication, database, cloud functions, etc. as mentioned before
[16][23]. This allows for faster development and is well-tested and proven, as many developers use
it [15][23]. Additionally, these tools also for faster development as less functionality has to be
implemented as less rigorous testing is required [17][23]. Furthermore, as this is a service, there is
less maintenance as this is handled by the provider in this case Google [17].

However, it is a paid service for large applications and the costs add up rapidly [18]. Additionally,
the database (Firestore) is non-relational, which may not be suitable for all applications, especially
for highly relational data which was the case for this application [18][19]. Firebase may also be less
flexible as it is not custom-built for the exact specifications of the system [18]. Despite these
limitations, Firebase is widely used, and there is a large community of developers with many

17



Discussion Platform Maruf Bepary

resources and tools available, such as "react-firebase-hooks," that can make development faster and
to a higher standard [17].

2.1.2 Previous System based on Flask (Python)

Introduction to Flask

Flask is a micro web framework written in Python that provides a simple and easy-to-use platform
for web development [20]. It is a minimalistic framework that provides only the essential tools
required to build a web application, making it a great choice for small to medium-sized projects
[20]. Flask is designed to be flexible, allowing developers to easily extend its functionality by
adding additional packages or plugins as needed [20]. Additionally, Flask is lightweight and fast,
making it a great choice for building high-performance web applications [20]. Due to its ease of
use and versatility, Flask has become a popular choice for building web applications in Python, and
is widely used in the web development community [20].

Services and Tools Offered by Flask

There are several tools and services that Flask provides to assist with development. One of these
tools is routing, which allows you to define and manage the URLs of your application in a simple
and flexible way [20]. Another tool is templating, which enables you to create and render dynamic
HTML pages using various templating engines, such as Jinja2 [20]. Flask also supports database
integration, which lets you connect to and interact with different types of databases, such as SQL
databases and NoSQL databases [20]. Moreover, Flask has a middleware architecture that allows
you to add custom logic to your application at different stages of the request-response cycle [20].
Flask also has a built-in debugging mechanism that helps you troubleshoot issues with your
application during development [20]. Furthermore, Flask has a large and active community of
developers who have created many extensions that add additional functionality to the framework
[20]. These extensions can be easily installed and integrated into your application to provide
additional features and tools [20].

However, it does not provide certain built-in tools and services that are commonly found in full-
stack frameworks. These include an ORM (Object-Relational Mapping) to interact with databases,
and an administration panel for managing the backend [21]. Flask relies on third-party libraries for
these features, which can make it more flexible but also more complex to set up [21]. Additionally,
Flask does not have built-in security features, such as protection against cross-site scripting (XSS)
or cross-site request forgery (CSRF) attacks, so these must be implemented manually or with
additional libraries [21]. Furthermore, Flask is not designed to handle large amounts of traffic or
complex deployment scenarios, so it may not be the best choice for large-scale applications [21].

Use in the Project

The previous system used Flask, which allowed for using the same back-end for multiple interfaces
[22]. Flask supports the use of a relational databases, which is more suitable for modelling the
application. It offers more options for deployment and scalability as it is possible to choose
different platforms depending on price and availability, or even build custom servers [22]. Flask
also allows for more flexibility and can be designed to the exact specification of the system [22].

However, everything would have to be built manually, such as authentication, managing data in the
database, and managing security [22][24]. This could also lead to a less stable system that requires
more rigorous testing to ensure quality, reliability and security [22][24].

2.1.3 Supabase as an Alternative to Firebase

Introduction to Supabase

Supabase is a relatively new backend as a service that provides developers with an alternative to

Firebase [25][26]. Like Firebase, Supabase offers a set of tools and services that make it easy for

18



Discussion Platform Maruf Bepary

developers to build and deploy web applications without having to worry about setting up and
maintaining a custom backend [25][26]. Supabase provides a number of features and benefits that
are similar to Firebase, but with a focus on open-source and fully customizable options [25][26].
This allows developers to have more control over their backend while still taking advantage of the
benefits of using a backend as a service [25][26].

Services and Tools Offered by Supabase

Supabase offers a range of services and tools (similar to Firebase) that are designed to simplify and
streamline the backend development process [25][26]. Some of the key services it offers include a
real-time database, authentication, file storage, and APIs. The real-time database provides a cloud-
based solution for storing and managing data, making it easy to build and scale applications with
real-time data syncing and updates [25][26]. The authentication service offers a secure and flexible
solution for managing user authentication, with support for passwordless authentication and multi-
factor authentication (which are paid in Firebase), it also offers more third-party providers
compared to Firebase [25][26]. The file storage service provides a secure and scalable solution for
storing and managing files, while the APIs allow developers to easily create and manage APIs for
their applications [25][26]. In addition to these services, Supabase also offers a range of tools for
managing and deploying applications, including a CLI, an API playground, and a dashboard for
managing and monitoring applications [25][26]. With its range of services and tools, Supabase
provides a comprehensive and flexible solution for building, deploying, and managing applications
in the cloud [25][26].

Comparison to Firebase

Supabase offers a number of services that are not available on Firebase, making it a more
comprehensive backend as a service solution [25][26]. One of the key features is the advanced SQL
interface, which allows developers to query and manipulate data stored in its PostgreSQL databases
using SQL [25][26]. This is a major difference from Firebase, which only provides a NoSQL
interface. Supabase also offers built-in user authentication, allowing users to log in with email and
password or social logins like Google and GitHub [25][26]. This is more extensive than the
authentication provided by Firebase [25][26]. Additionally, Supabase provides a way to
dynamically create APIs using SQL, making it easier for developers to expose data stored in their
databases to other systems [25][26]. This is not available on Firebase. Supabase also allows
developers to use custom domains for their APIs, making it easier to use their APIs in production.
This feature is not offered by Firebase [25][26]. Lastly, Supabase provides a collaborative SQL
editor that allows multiple users to work on the same query at the same time, making it easier to
work with team members [25][26]. This feature is not available on Firebase [25][26].

Firebase offers a number of services that are not available on Supabase, providing a wider range of
tools for developers. Some of these services include Remote Config, which allows developers to
change the behavior and appearance of their app without having to release a new version, Dynamic
Links, which create deep links that work across multiple platforms, and App Indexing, which
makes it easier for users to find and launch an app from Google Search results [25][26].
Additionally, Firebase provides Cloud Messaging, a free service that allows developers to send
notifications and messages to their users, and In-App Messaging, which allows developers to send
targeted messages to users while they are actively using the app [25][26]. Finally, Firebase also
provides a built-in integration with Google Analytics, providing valuable insights into user
interactions with the app [25][26].

How it Could be Used in this Project
Supabase has many of the advantages of Firebase and Flask, such as being a backend as a service
with tools such as authentication, database, and edge functions included. It is widely used and

proven, ensuring a certain level of stability, security, and quality [23]. Unlike Firebase, it uses a
relational database based on Postgres, which is more suitable for modelling the application

19



Discussion Platform Maruf Bepary

[25][26]. Supabase is a newer service and has only recently become viable for large production
applications. The community is not as large as Firebase, so there are fewer resources and tools
available, such as hooks for React [25][26]. Supabase offers more flexible deployment and
scalability options as it provides a Docker image, allowing for choosing any cloud provider and not
being locked into a specific provider like Firebase [25][26]. This could also allow for packaging the
entire application in a Docker image [25][26].

20



Discussion Platform Maruf Bepary

2.2 Front-End Technologies

The front end of a website is the part that users can see and interact with on their browsers [27]. It
includes elements such as text, images, buttons, menus, forms, and animations [27]. The front end
is also called the client-side because it runs on the user's device [27]. It is important to make the
front-end well designed, engaging and accessible as it is what users directly interact with [27].

2.2.1 React Library

React is a popular JavaScript library for building user interfaces and has been widely adopted by
developers for building web and mobile applications [28]. React allows developers to create
reusable Ul components and manage the state of their applications, making it easier to build
complex and dynamic user interfaces [29]. React uses a virtual DOM (Document Object Model) to
efficiently update the UI and optimize performance [29]. This makes React a fast and reliable
option for building high-performance applications [29].

For this project, both the first prototype and the current system use React. Both also use React
component libraries for faster and more agile development.

2.2.2 Component Libraries for Both Systems

React component libraries are pre-built and pre-styled UI components that can be easily imported
and used in React projects [30]. These libraries provide a set of components with consistent design,
behavior, and functionality, making it easier for developers to build user interfaces and ensure
consistency across their applications [30]. React component libraries are a great way to speed up
development and reduce the amount of time spent on creating and styling individual components.
They also help to maintain a consistent design and user experience, making it easier for users to
navigate and understand the application [30].

As mentioned before, both the current system and the first prototype use React and components
libraries for faster development and well-tested styling that adheres to accessibility guidelines [30].
This means that high-level components do not have to be created from scratch and custom CSS
does not have to be developed and thoroughly tested [31]. However, the use of component libraries
makes it less flexible, making it harder to implement more complex UI designs that were not added
to the library [31].

Chakra Ul

Chakra Ul has proven to be easier to use compared to Material Ul It has a smaller library of
components, but this has not been a problem in the current system. Chakra Ul is also more flexible
in terms of using custom designs, as it does not follow a set design standard like Material UI but
rather allows the developer to build from what is provided. Additionally, Chakra UI provides a
theme object that changes the theme of the entire app at once, making it easier to manage the
overall design and reducing the risk of inconsistencies.

Material Ul

Material UI, on the other hand, has a larger library of components but this has not been an issue as
the components provided by Chakra Ul were adequate [32]. Material Ul is also much older
meaning that there are more resources online but this has not been a major advantage as Chakra Ul
is also well documented and despite its short existence, it has managed to gain a lot of users
contributing to its resources online [32]. However, it is harder to learn and less flexible in terms of
using custom designs [32]. Material Ul follows a set design standard inspired by Google, which
may not be suitable for every project making it less flexible than Chakra UI [32]. Material UI also
provides a theme object, but it is not as simple to use and requires more configuration to work with
different styling solutions [32].

21



Discussion Platform Maruf Bepary

Alternative Component Libraries

The developer considered several other less popular or less flexible component libraries for React,
including Ulkit and Blueprint [33]. Ulkit was found to be very simple and fast, but it only had 30
components, making it less viable for complex applications like this project [33]. Blueprint, on the
other hand, was mainly used in data visualization, which was not the main focus of this application
[33].

2.2.3 Next.JS Compared to Regular React

React has many weaknesses which make it unsuitable for large complex projects such as this one.
One of the main weaknesses of React is its lack of structure, as it allows developers to write code in
any way they want, which can lead to a cluttered codebase and make it harder to maintain and scale
the project in the future [34]. React is also not a full-fledged framework and requires additional
libraries and tools to handle tasks such as routing, state management, and server-side rendering
[34]. These additional tools can lead to a steep learning curve for new developers and can make the
development process more complex [34]. Furthermore, React does not have a built-in solution for
SEO optimization, which can make it difficult for search engines to crawl and index the content of
a React-based website. This makes using React very difficult for the first prototype [34].

Next.JS on the other hand, eliminates all the issues and adds missing functionalities to React [34].
It is a popular and widely used JavaScript framework for building server-side rendered (SSR) and
static web applications [34]. It is built on top of React and provides a seamless and simple way to
build and deploy fast, reliable and scalable web applications [34]. Next.JS provides a set of built-in
features such as automatic code splitting, optimized performance, and easy-to-use APIs for server-
side rendering and data fetching, making it a popular choice for web developers [34]. Additionally,
Next.JS also supports static exporting, allowing developers to generate static HTML files that can
be served directly from a CDN, resulting in faster page load times and improved performance [34].

For these reasons, Next.JS was chosen to be used for the final system after running into roadblocks
using regular React for the first project. It has provided a set standard forcing consistency which
would allow developers to collaborate and contribute to this project in the future [34]. On the first
prototype, the use of regular React was a hindrance and slowed down development as a lot of time
was taken up by configurations and adding missing functionalities to the library by adding other
libraries [34]. The lack of a standard in the project structure would also make it more difficult for
developers to contribute to the project in the future [34].

2.2.4 State Management
State

In React, state is an updatable structure (observable object) that is used to contain data or
information about the component [35]. State is used by React to control how a component behaves
depending on its current state [35]. This state changes when certain events take place or by specific
user interactions [35]. Once the state changes due to the event, the component would observe this
and re-render [35].

Because state is dynamic, a component can keep track of changing information between renders,
thereby keeping it dynamic and interactive [35]. This is what allows the site to be interactive. For
example, a counter component can use state to store and update the current count value in the user
interface without refreshing the page.

State Management
State management is the process of handling state changes in a React application [36]. State

management involves creating, updating, and accessing the state object in a component [36]. State
management also involves passing state data to other components as props [36]. For example, a

22



Discussion Platform Maruf Bepary

parent component can pass its state data to a child component as a prop. This allows the state of
one component to change the behaviour of children if necessary [36].

The purpose of state management is to make the application consistent, predictable, and easy to
debug [37]. State management helps to avoid unnecessary re-rendering of components and ensures
that the UI reflects the latest state data [37]. State management also helps to organize and
modularize the code by separating concerns and responsibilities among components [37].
Furthermore, using state a manager helps avoid fetching data from the backend caching the data
locally and reusing it across components [39].

React has a built-in tool for managing the state called React Context API [36]. This is not suitable
for large projects for various reasons [38]. One of the reasons is that it is cumbersome to use when
there are multiple pieces of state that need to be shared across different components [38]. Multiple
context providers and consumers need to be created, which can result in a lot of boilerplate code
and nested components, and makes it difficult to manage the state [38]. Another reason is that it
does not support derived or computed state that can depend on other state or external sources
requiring additional libraries or custom logic to achieve this functionality [38]. Finally, it can cause
unnecessary re-rendering of components that consume the context, even if they don't use the part of
the state that changed [38].

State Management Tools

A state manager is a tool or library that helps with state management in a React application [37]. A
state manager provides features such as global state, actions, reducers, selectors, middleware, etc.
that simplify and optimize state management [37]. For example, Redux is a popular state manager
for React that implements the Flux architecture [37]. The main reason to use a state manager is to
handle complex and large-scale applications that have many components that share and manipulate
state data [37]. A state manager can help with performance optimization by avoiding unnecessary
re-rendering of components [37]. A state manager can also help with code readability and
maintainability by enforcing best practices and patterns for state management [37].

Comparing Recoil to the Built-In React Context API

For this project, Recoil is the state management tool that was used. It provides many advantages
over the Context API built into React [40]. Recoil uses atoms and selectors, which are fine-grained
units of state that can be subscribed to individually, this prevents unnecessary re-rendering from
components that may be related to a state [40]. Recoil provides one context provider (atom or
selector) which can be accessed from any component, this eliminates the need to create multiple
context providers [40]. Finally, Recoil supports derived state with selectors, which can also handle
asynchronous operations and error handling unlike the Context API [40].

Alternative State Management Tools

There are several state management solutions available, each with its own unique features and
benefits.

Redux is one of the most popular state management solutions for React [41]. It provides a
predictable and centralized state management system that allows developers to manage the state of
their applications in a structured way [41]. However, Redux can be difficult to understand and
implement, especially for new React developers [41]. Additionally, it can lead to verbose and
complex code, making it harder to maintain and debug [41].

Jotai is a relatively new state management solution that provides a simpler and more intuitive
approach to state management [41]. Unlike Redux, Jotai does not require developers to write a lot
of boilerplate code, making it easier to implement and maintain [41]. However, it does not provide
the same level of control and flexibility as other state management solutions [41].

23



Discussion Platform Maruf Bepary

Rematch is another popular state management solution for React [41]. It is based on Redux and
provides a more elegant and developer-friendly API for state management [41]. Rematch also
provides a simpler and more intuitive approach to state management, making it easier to use and
maintain than Redux [41]. However, it may not be suitable for complex state management
scenarios [41].

Zustand is another minimalistic state management solution that is easy to use and implement [41].
It provides a simple and intuitive API for state management, making it a good choice for small-
scale React applications [41]. However, it may not be suitable for large-scale and complex
applications [41].

Recoil was chosen for this project because it provides a unique approach to state management that
combines the best features of other state management solutions [41]. Recoil provides a simple and
intuitive API, like Jotai and Zustand, while also providing the control and flexibility of Redux and
Rematch [41]. Additionally, Recoil is built and maintained by Facebook, ensuring that it is a robust
and well-supported state management solution [41].

In conclusion, the choice of state management solution depends on the specific requirements of the
project. Recoil was chosen for this project because it provided a balanced approach to state
management, combining the best features of other popular state management solutions.

2.2.5 Alternative JavaScript Ul Libraries and Frameworks

When it comes to alternative UI libraries and frameworks to React, there are several options to
consider.

One such alternative is Svelte [42]. Although it is relatively newer and less used compared to
React, Svelte is a full-stack framework that includes features such as routing and client-side
functionality, making it instantly usable with minimal configurations [42][43]. Full-stack
frameworks like Next.JS help to build these features on top of React [42][43]. Svelte is easier to
learn as it is better designed and uses a structure similar to HTML instead of JSX [42]. The use of
component libraries also makes React very easy to use [42][43]. Additionally, Svelte is faster than
React as it compiles to JavaScript without a virtual DOM or runtime libraries [42][43].

Another framework that could have been used is Solid [44]. It is faster than React and includes
features such as client-side functionality, for example, handling data storage [44]. Additionally,
Solid is more beginner-friendly as it uses regular JavaScript or TypeScript instead of JSX [44].
However, most of these issues [44].

Vue is another alternative that is simpler to use compared to JSX, but it uses its own less
standardized structure [45]. However, it is not suitable for large projects as 2-way data binding
makes data management harder [45].

Angular is an MVC framework designed for efficient design of the UI [46]. It is more structured
and stricter compared to React, enforcing a consistent structure and coding style, making it easier
for collaboration with larger teams [46]. Angular has built-in features such as routing, proper state
management, and form validation, as it is a full-stack framework [46]. However, it also has a
steeper learning curve and is more complex compared to other libraries and frameworks due to its
strict syntax, dependency injection, and directives [46].

24



Discussion Platform Maruf Bepary

2.3 Database

A database is a tool for collecting and organizing information that can be stored electronically in a
computer system [47]. A database is usually controlled by a database management system (DBMS)
that allows users to create, update, delete, and query data [47]. A database can store information
about people, products, orders, or anything else related to a web application [47]. A web
application uses a database to store and retrieve data that is needed for its functionality [47]. For
example, a web application can use a database to store user accounts, preferences, orders,
inventory, etc. [47]. A web application can also use a database to perform calculations, generate
reports, and display dynamic content on web pages. A web application connects to a database using
various methods such as connection strings, drivers, APIs, or frameworks [47].

2.3.1 Relational Database used on First Prototype

A relational database (SQL) is a type of database that stores data in tables, which consist of rows
and columns [48]. Each row represents a record of data, and each column represents a field or
attribute of data [48]. A relational database uses a programming language called SQL (Structured
Query Language) to create, manipulate, and query the data in the tables [48]. SQL is widely used
for web application development and data analysis [48].

A relational database is used because it allows users to easily access and manipulate data based on
logical relationships between tables [48]. For example, a user can join two tables that share a
common column (such as customer ID) and retrieve information from both tables at once. A
relational database also ensures data integrity and consistency by enforcing rules such as primary
keys, foreign keys, and constraints [48].

Advantages

There are many benefits of using a relational database given they are normalised. Relational
databases are more robust as they have higher data integrity (overall completeness, accuracy and
consistency of data) insuring the data is valid and consistent improving its reliability [48][49][50].
It also reduces data redundancies by eliminating all data repetitions improving consistency
[48][49][50]. This consistency reduces errors where data does not match up or it is not found
[48][49][50]. Relational databases are extremely efficient at modelling relationships between
objects making them ideal for this type of project [48][49][50].

Disadvantages

However, there are many disadvantages that must be considered when using a relational database.
The initial cost is higher as they must be normalised to insure the benefits discussed above
[49][50]. relational databases are also less flexible as modifying the schema would require
normalising the database again [49][50]. Furthermore, fetching data from multiple tables requires
joining the table which has a negative effect on performance [49][50]. Finally, they are more
difficult to scale horizontally as the database cannot easily be split into multiple smaller databases
and stored in separate servers [49][50].

Use in the Project

As mentioned before, the first prototype of the project used a relational database based on MySQL.
This is because relational databases are highly efficient at modelling the highly relational data in
this project [50]. However, designing the database schema was time consuming as it required
normalising the database as shown in the Relational Database (SQL) section [50]. Additionally, as
this was an agile project, the database schema changed often requiring normalisation to be carried
out multiple times. This rigid schema made it difficult to change the functionality of the project.
Refer to Relational Database (SQL) to view the database design.

25



Discussion Platform Maruf Bepary

2.3.2 Non-Relational Database using on Final System

A non-relational database is a database that does not use the tabular schema of rows and columns
found in most traditional database systems [51]. Instead, non-relational databases use a storage
model that is optimized for the specific requirements of the type of data being stored [51]. Non-
relational databases are sometimes referred to as “NoSQL” [51]. Non-relational databases are often
used when large quantities of complex and diverse data need to be organized, or when data is
frequently changed or updated [51]. The data is normally stored in a structure similar to a file
system [51].

Advantages

Non-relational databases have many advantages. One advantage is that they are are easier to scale
vertically, due to the way the data is stored [52]; as mentioned before, the data is stored in a similar
way to files in a file-system (folders and documents) which makes it much easier to split into
multiple smaller databases and store them in different servers [52]. Because of its minimal use of
relations between objects, there is no joining making them much faster than relational databases for
large amounts of data [52]. The lack of normalisation also makes them more flexible allowing for
the schema to change [52]. Sometimes, non relational databases are used as cache for relational
databases when the data is highly relational but there is a lot of data to process [52].

Disadvantages

There are some disadvantages to using non relational databases. The lack of ACID (atomicity,
consistency, isolation, durability) transactions across multiple documents or collections make it
harder to update related data and can lead to failures due to the lack of integrity and consistency
[52]. Due to the lack of the properties mentioned above, querying non relational databases is also
more difficult, especially in the case of complex queries [52]. Unlike relational database which all
work in a similar way, different non relational databases work in different ways making the
ecosystem more fragmented [52], for example, Firestore and MongoDB do not function the same
way even if the base concept is the same.

Use in the Project

As mentioned before, the current system uses a non relational database provided by Firebase. Due
to the object modelled in the project being highly relational, querying data was difficult, however,
these complex queries were not carried out often [50]. However, the schema was much more
flexible which was vital for this project as the requirements were chaining constantly as the project
went on meaning that the database was also being extended often, this would have required
multiple normalisations procedures if using a relational database [50]. This flexibility also
decreased development time facilitating Agile development as discussed in the Methodology
section [53]. As mentioned before, this type of database is also more scalable meaning that it would
be much easier to reach a wider audience at lower costs [50].

26



Discussion Platform Maruf Bepary

Chapter 3: Software Engineering

3.1 Methodology

Project management methodologies are approaches used to plan, organize, and execute projects
efficiently [54]. The chosen methodology depends on the project's specific requirements, including
scope, timeline, budget, and stakeholders [54].

There are several different project management methodologies, each with its own strengths and
weaknesses [54]. Some are focused on linear, sequential approaches, while others prioritize
flexibility and adaptability [54]. Some methodologies are more suited to larger, more complex
projects, while others are better suited to smaller, more straightforward projects [54].

The key to selecting the appropriate methodology for a given project is to understand the project's
specific requirements and constraints [54]. Factors to consider when selecting a methodology
include the level of clarity of project requirements, the degree of stakeholder involvement, the level
of complexity, and the project timeline and budget [54].

3.1.1 Agile

Agile is a project management approach that values flexibility and collaboration [55]. It
emphasizes adaptation to change and delivering small, incremental improvements to a project,
rather than trying to deliver a perfect final product all at once [55]. The Agile approach encourages
regular communication and feedback between team members, allowing for continuous
improvement and adaptation to changing requirements [55]. This approach has become popular in
software development and is now widely used in other industries as well [55].

Advantages

The Agile methodology used in this project proved advantageous in many ways. By setting short-
term deadlines, it encouraged the developer to be productive and efficient in their work [56]. The
approach also allowed for flexibility in changing project direction and experimenting with new
features or functionalities [56]. The methodology was client-facing, which meant that developers
constantly delivered some version of the product for the client's feedback [56]. This constant
feedback helped ensure that the final product met the client's expectations and needs [56].

One of the key benefits of the Agile methodology is its ability to adapt to changing requirements
[56]. As the project went along, requirements were discovered, and the developer was able to adjust
their approach accordingly [56]. The initial plan was not rigid but rather a list of features that
needed to be implemented [56]. This allowed for more flexibility in adapting to changing
requirements and implementing new features as they were discovered [56].

In addition, mockups were used before development to evaluate what the site would look like as a
simple prototype or proof of concept. This allowed for early feedback and changes to be made
before development, reducing the likelihood of costly changes later on. The feedback from
mockups helped ensure that the final product met the client's expectations and needs.

Disadvantages

While the Agile approach has many advantages, it also has some potential downsides. For instance,
there is a potential for overlap or unnecessary effort spent on later stages if an early phase needs to
be modified [56]. Additionally, the project timeline can be difficult to determine from the start [56].
However, in the case of this project, these potential downsides were not an issue since there was
only one developer.

27



Discussion Platform Maruf Bepary

How it Affected the Development

The project followed an Agile approach, as the requirements were discovered during the project's
progression. The initial plan was a list of features that needed to be implemented, which allowed
for more flexibility in adapting to changing requirements and implementing new features.

Mockups were used to evaluate what the site would look like as a simple prototype or proof of
concept, which allowed for early feedback and changes to be made before development. This
hybrid approach allowed for constant feedback and experimentation, making it easier to adapt to
changing requirements while also providing a structured plan for the project.

The Agile approach also allowed for ample experimentation, by allowing the developer to try
different technologies at a small scale and evaluate what worked without deciding on a technology
too early on. The initial prototype of the system used Flask for the back-end and React (Material
UI) for the front end.

The use of a non-relational database also facilitated this Agile workflow, as its flexibility allowed
the system to be changed quickly if there were changes in requirements, while the requirements
were still being discovered and during the experimentation phase. On the other hand, the use of a
relational database, as used in the first prototype of the project, was a hindrance to the development
as each time there was a change, the database required restructuring and redoing the calculations
necessary to normalize the database, which is something that would have to be done often as the
requirements were not finalized.

The use of React component libraries also contributed to this project’s Agile development. This is
because using component libraries made development faster as components did not have to be
created from scratch and less testing was required as Chakra Ul and Material Ul already carried out
their own testing to verify that the components meet accessibility standards

3.1.2 Waterfall

The Waterfall methodology is a sequential approach to project management that follows a strict,
linear process from start to finish [57]. The process is divided into distinct phases, with each phase
needing to be completed before progressing to the next one [57]. The project requirements are
established early on, and a concrete plan for the project is created from start to finish [57].

Advantages

One of the benefits of the Waterfall methodology is its structured approach, where each phase of
the project requires a deliverable to progress to the next phase [57]. This makes the workflow more
structured, and it is easier to determine when each phase of the project is complete [57].
Additionally, the team establishes project requirements early on, which can save time in the long
run [57].

Disadvantages

However, the rigidity of the plan can also make it difficult to make changes once the plan has been
made [57]. If an issue with a phase is realized after progressing to the next one, the process can
take longer as the team would have to go back and check where the mistake or error occurred [57].
Furthermore, the plan is too rigid, meaning that it can be hard to make changes once the plan has
been made [57]. This makes the Waterfall methodology less suitable for projects with constantly
evolving requirements [57].

Reason Why it was Not Used

As mentioned before, the Waterfall methodology was not used due to the evolving nature of the
project requirements. The initial plan was not rigid but rather a list of features that needed to be

28



Discussion Platform Maruf Bepary

implemented. The requirements of the project were being discovered as the project went along,
which would have made it difficult to create a concrete plan from start to finish. Additionally, the
project was being developed by only one developer who could adapt the project requirements as
needed. In this context, the Agile methodology was more suitable since it allowed for more
flexibility in adapting to changing requirements and implementing new features as they were
discovered.

29



Discussion Platform Maruf Bepary

3.2 Testing

Testing ensures that the system meets a certain quality keeping faults to a minimum and verifying
that the system meets requirements that were defined [58]. Additionally, tests also document the
functionality and expected behaviour of the code [58]. Furthermore, it facilitates refactoring code,
this is because passing code can be refactored and tested again to verify if the code still functions
the same way [58].

3.2.1 Unit Testing

Unit testing is a software development practice that involves writing and running small pieces of
code to verify the functionality and quality of individual units or components of a larger system
[59]. A unit can be a function, a class, a module, or any other logical part of the code [59]. Unit
testing is important for several reasons: it helps developers find and fix bugs early in the
development process, it improves the design and maintainability of the code by encouraging
modularity and separation of concerns, it facilitates code reuse and refactoring by ensuring that
changes do not break existing functionality, and it enhances the confidence and reliability of the
software by providing evidence that it meets its specifications and requirements [59].

Python

The first prototype of the project was based on Python, hence appropriate libraries were used for
testing. One such library was PyTest, which was used for testing the code due to its easier and more
flexible structure.

On the other hand, UnitTest is a built-in testing library for Python, however, it was not used in the
project due to it being more complex to use and not as powerful or flexible as PyTest [60]. PyTest
offers a more comprehensive and flexible approach to testing, making it easier to test different parts
of the code and ensuring that the code is functioning as expected [60].

There are other Python testing libraries available, however, PyTest was selected as the preferred
option due to its ease of use and flexibility [60].

TypeScript

As mentioned before, the current system uses TypeScript meaning that testing libraries appropriate
for this language must be chosen to carry out testing. The two main choices that have been
considered are Jest and Vitest.

Jest and Vitest are both popular JavaScript testing frameworks that are used to write and run tests
for JavaScript applications [61]. Jest is a fast and flexible testing framework that provides a simple
and easy-to-use interface for testing applications [61].. It is highly configurable and comes with a
wide range of features and functionalities that make it a popular choice for many developers [61]..

On the other hand, Vitest is a relatively new testing framework that has been designed specifically
for testing large-scale JavaScript applications [61]. It is built on top of the popular and well-
established Jest framework, and it provides a more robust and scalable approach to testing [61].
Vitest is designed to handle complex testing scenarios and it provides a number of advanced
features that make it well suited for testing large and complex applications [61].

In terms of advantages, Jest has a lot of community support, making it easier to find resources and
solutions to common problems [61]. Jest also has a large number of plugins and extensions that can
be used to extend its functionality [61]. On the other hand, Vitest provides a more robust and
scalable approach to testing, making it well suited for testing large and complex applications [61].

30



Discussion Platform Maruf Bepary

Vitest also provides a number of advanced features that make it well suited for testing complex
testing scenarios [61].

In terms of disadvantages, Jest can be a bit slow for large applications, and its simplicity can
sometimes lead to a lack of customization options [61]. Vitest, on the other hand, may have a
steeper learning curve for new users, as it provides a more complex and feature-rich approach to
testing [61].

In conclusion, Vitest has been chosen as it provides benefits that are more appropriate for this
project. Due to the scale of this project, its performance its critical and being a newer library there
are not as many old complexities that are not longer needed [61].

3.2.2 User Testing

User testing refers to the process of evaluating a product, application or website by having real
users interact with it [62]. The aim is to collect feedback from users about the product's usability,
functionality, and overall satisfaction [62]. User testing is an important step in the development
process as it allows developers to identify any problems or pain points in the product that may
affect the user experience [62]. This information can then be used to make improvements and
optimize the product for the end-user [62]. By conducting user testing, developers can ensure that
the product meets the needs and expectations of the target audience and provides a positive user
experience [62]. This helps to increase user satisfaction, loyalty, and the overall success of the
product. In addition, user testing can also help to identify any potential security or privacy issues
that may need to be addressed [62].

For this project, user testing was a crucial aspect of the development process. The goal was to
gather feedback from real users to understand their experience with the system and identify areas
for improvement. To gather this feedback, participants were asked to fill in a questionnaire on
Google Forms. The questionnaire was designed to gather information about the participant's
experience with the system, their satisfaction with its features, and any suggestions for
improvements.

To prevent abuse or the same person from voting multiple times, creating bias in the results,
participants' emails were taken and used to keep track of who had filled out the questionnaire. This
ensured that the results were accurate and representative of the actual user experience. The use of
Google Forms also made it easy to collate and analyse the data, providing valuable insights into the
user experience and the areas that needed improvement. The results of the user testing were then
used to guide further development and ensure that the system was meeting the needs of its users.

Usability of the system

31



Discussion Platform Maruf Bepary

How easy was it to navigate the system?
3 responses

2
2 (66.7%)

1 (33.3%)

0 (0%) 0 (0%) 0 (0%)
" | | |
1 2 3

Based on the results, it can be seen that a majority of the participants found the system to be easy to
navigate with 2 out of 3 participants rating it as "Easy" and 1 out of 3 participants rating it as "Very
Easy". This suggests that the design and structure of the system was user-friendly and
straightforward for the majority of the participants.

How easy was it to authenticate (sign up and log in)?
3 responses

2 2 (66.7%)

1 (33.3%)

0 (0%) 0 (0%) 0 (0%)
" | | |
1 2 3

Based on the results of the user testing for the project, it appears that the majority of the
participants found the authentication process to be very easy with 2 out of 3 participants rating it as
such. This suggests that the sign up and login process was well designed and user-friendly. The
remaining participant rated it as easy, indicating that there may have been some minor issues or
areas for improvement.

The developer has given the flexible authentication methods for users making the site accessible;
the standard email and password authentication is available along with third party providers such as
Google and GitHub

32




Discussion Platform Maruf Bepary

How easy was it to create a community?
3 responses

2
2 (66.7%)

1 (33.3%)

0 (0%) 0 (0%) 0 (0%)
" | | |
1 2 3

Based on the results of the user testing, 2 out of 3 participants found it easy to create a community
on the system, while 1 participant found it very easy. This indicates that the majority of participants
had a positive experience when it came to creating a community on the system. It could be due to
the intuitive interface and clear instructions provided by the system, making it easy for users to
understand how to create a community.

There are currently tow mechanisms for creating communities. However, when using the site on
mobile, there is only one mechanism which does not give the user with multiple options.

How easy was it to navigate to a community?
3 responses

2

2 (66.7%)

1 (33.3%)

0 (0%) 0 (0%) 0 (0%)
: | | |
1 2 3 4

Based on the results, it seems that 2 out of 3 participants found it very easy to navigate to a
community on the system. This indicates a high level of user-friendliness and ease of use for this
particular aspect of the system. On the other hand, 1 participant found it hard to navigate to a
community, which could indicate some room for improvement in terms of user experience.

Based on this feedback, a new page for accessing all the communities in the site has been created.
Previously, only the top 5 communities could be viewed and this feature was only accessible on
computers and not smartphones meaning they would have no way of finding communities. The

33




Discussion Platform Maruf Bepary

new page which was implemented was accessible to both mobile and computer users: mobile users
could use the community directory menu to navigate whereas computer users could the same
method as mobile as well as using the recommended card on the side and click on a button to
navigate to the same page.

How easy was it to create a post in the community?
3 responses

2

2 (66.7%)

1 (33.3%)

0 ((‘T%) 0 ((f%) 0 (?%)

1 2 3

These results suggest that the majority of participants (2 out of 3) found it very easy to create a post
in the community. Only 1 participant found it easy to create a post. This indicates that the process
for creating a post in the community is user-friendly and easy to understand for the majority of
users. This could be a result of clear and intuitive navigation, as well as a simple and
straightforward user interface. The high level of ease in creating posts in the community could also
indicate that users have a good understanding of how to use the site and that they are able to
complete tasks with ease.

How easy was it to delete a post in the community?
3 responses

3

3 (100%)

0 (?%) 0 (Cl)%) 0 ((‘)%) 0 (C‘)%)
0
1 2 3 4

It appears that all three participants found it very easy to delete a post in the community. This

34




Discussion Platform Maruf Bepary

suggests that the functionality for deleting posts in the community is well designed and user-
friendly. Having an intuitive and easy-to-use interface for managing content within communities is
important for fostering active and engaged communities. The button for deleting posts is only
available to the users who created the post and it is accessible everywhere across the app.

How easy was it to comment to a post in a community?
3 responses

3

3 (100%)

0 (0%) 0 (0%) 0 (0%) 0 (O“’/o)

1 2 3 4 5

This suggests that all of the participants found it very easy to comment on a post within a
community. This indicates a high level of user-friendliness and ease of use for this feature of the
system. This is because opening a post gives the user a big text field (which is very visible) to
create a post.

What were technical issues that you encountered if any while using the website?

On phone sometimes when pressing the screen some of the boxes didn’t go away.

nope

- I am not able to view my profile when "My profile" is clicked. - I cannot post to the main feed nor
add images or links to the post.

These are examples of technical issues encountered by some users while using the website. It
seems like some users faced difficulties with the interface on their phone and also encountered
issues with their profile and the ability to post to the main feed or add images and links to the post.
These technical issues may need to be addressed in order to improve the user experience on the
website.

Trying to create a post from the main page opens the communty directory menu as posts can only
be created within the community page. This probably means that it was not clear enough to the
users that they were supposed to go to the approapriate community. This could potentially be
improved by allowing the user to go the post creation page but giving them a drop down to select a
community if the were directed from the home page.

What are some improvement you would like to see?

More responsive

- Functionality. - When the community is created, I need to refresh my page before I am able to see
it in the drop down list. - One may want want a modal that confirms whether they want the

35




Discussion Platform Maruf Bepary

comment to be deleted. This can help prevent accidental deletion.

Some of the improvements that the participants would like to see are: better responsiveness of the
website, improved functionality and an additional confirmation step before deleting a comment to
prevent accidental deletion.

Design of the System

To what extent does the design of the system make it easy to accomplish tasks?
3 responses

2

2 (66.7%)

1(33.3%)

0 ((f%) 0 (?%) 0 ((f%)

1 2 3

Based on the feedback, 2 out of 3 participants found the design of the system easy to accomplish
tasks, while 1 out of 3 participants found it very easy. This suggests that the majority of the
participants found the design to be user-friendly and straightforward. However, there is still room
for improvement, and some participants may have faced difficulties while using the system.

How visually appealing and consistent are the colors, typography, and layout of the system?
3 responses

3

3 (100%)

0 ((‘)%) 0 (Cl)%) 0 ((‘)%) 0 (Cl)%)
0
1 2 3 4

It appears that 3 out of 3 participants found the visual design of the system to be very appealing and
consistent in terms of colours, typography, and layout. This suggests that the design elements of the
system are well-coordinated and pleasing to the eye, which can enhance the overall user

36




Discussion Platform Maruf Bepary

experience.

How well does the system provide feedback on user actions?
3 responses

1.00

1 (33.3%) 1 (33.3%) 1 (33.3%)
0.75
0.50
0.25
0 (0%) 0 (0%)
0.00 ‘ ‘
1 2

It can be seen from the feedback that the system provides adequate feedback on user actions, but it
could be improved in certain areas to make it more intuitive and user-friendly. This can include
providing more clear and immediate feedback after a user performs an action, or making the
feedback more visually appealing and consistent with the overall design of the system.

This could potentially be improved by adding pop up messages confirming when an action was
successfully completed for example when deleting an image or creating a post. Adding more
confirmation dialogues (as mentioned in one of the previous questions) for deleting posts or other
actions would further improve the user experience.

How well does the system perform on different screen sizes and devices (the site is responsive)?
3 responses

2 2 (66.7%)

1 (33.3%)

0 (0%) 0 (0%) 0 (?%)

5 | |
1 2 3

According to the feedback, 2 out of 3 participants found the system to perform very well on
different screen sizes and devices, indicating that the site has a good level of responsiveness. This

37




Discussion Platform Maruf Bepary

is an important aspect of modern web development, as users increasingly access websites from a
variety of devices including desktops, laptops, tablets, and smartphones. A responsive design
ensures that the site can be easily used on all these devices, providing a consistent user experience
regardless of the device being used.

To what extent does the system incorporate accessibility features?
3 responses

2 2 (66.7%)

1 (33.3%)

0 (0%) 0 (0%) 0 (?Vo)

1 2 3

Based on the responses, it seems that the system is considered "accessible" by 2 out of the 3
participants and "very accessible" by 1 participant. This suggests that the system incorporates
accessibility features to some extent, but there is still room for improvement in this area.

What are some improvements you would like to see?

Add the ability to save posts

A helper guide, or message showing usability would be nice

- It would be nice to have a homepage in the system. I was unsure of what I was looking at when I
first opened the link so an indication that I am on my feed would also be appreciated. - I like the
fact that you can sign in with Google and Github. - I would like to be able to view my profile.

These are great suggestions for improving the system. Having the ability to save posts can be
useful for users who would like to come back to a post later. A helper guide or message indicating
the usability of the system would also be helpful for new users. A homepage can provide a clear
indication to the users of where they are in the system and what they are looking at. The ability to
sign in with Google and Github is a great feature, but it would also be helpful to be able to view
one's profile.

Conclusion

The results of the user testing of the project indicate that the system was generally well received by
users. The majority of users found the system easy to navigate and perform tasks, with a few minor
technical issues being reported. The design of the system was found to be visually appealing and
consistent, and the system provided good feedback on user actions. The system performed well on
different screen sizes and devices, with some users suggesting improvements in the area of
accessibility. The results indicate that the system is user-friendly and well designed, but there is
room for improvement in certain areas.

38




Discussion Platform Maruf Bepary

The sample size of the user testing was small and only included a limited number of participants
who completed the questionnaire. However, there were many more users who used the system and
provided feedback in person, but were not included in the formal user testing results due to the
small sample size.

39



Discussion Platform Maruf Bepary

3.3 Version Control System

A version control system is a tool that helps software engineers manage the changes and history of
their code. It allows them to track, compare, merge and revert different versions of the same project
[63]. Version control systems are commonly used because they enable collaboration, backup,
documentation and quality assurance in software development [63].

3.3.1Git

Git is a version control system (VCS) that is widely used in software development to manage and
track changes to source code over time [64]. It allows developers to collaborate on a codebase by
keeping track of changes made by different contributors and providing tools for managing conflicts
and merging changes [64]. Git also enables developers to revert to previous versions of the
codebase and provides a detailed history of changes (and revert to those changes), including who
made the changes and when [64].

Branches

In this project, Git was used extensively to manage the codebase and facilitate collaboration
between the developer and the supervisor [65]. Each feature was developed in its own branch,
allowing for easy tracking of changes and reducing the risk of conflicts when merging changes
back to the main branch [65]. Once a feature was implemented and its functionality was verified, it
was merged into the main branch [65]. This approach allowed for a structured development
process, with each feature being implemented and tested separately before being integrated into the
main codebase [65]. This also allowed for the asynchronous development of features for parallel
development [65].

originfmodals | Added blur to all modals 15Mar 2023 71118 Maruf Bepary f6

in | Not displaying private communities 15 Mar 2023 Maruf Bepary

£ erigin/profile | Removed uselass footer 15 Mar 202317:52 Maruf Bepary c2ea0f82

Bug Fix: Updated 3rd party auth error message to be displayed user buttons - Before ... 15 Mar 202317:18 Maruf Bepary d37373cd

community_settings origin | Added documentation 6 epary 9888fec7
Changed icon c rof community settings icon - Added default colour to icon prop epary 1b9743fa
Cleaned |a - Added community name - Added curr ommunity privacy status
Remove nge picture sections - Replaced v community settings modal
Save button o er is main save button - Uplo ge ersaveb... 15Ma g Maruf Bepary 630b4fc2
Update community privacy type - Split main modal into 2 components: updating imag... 14 Mar 2 :04 Maruf Bepary c432cf80
Created community settings modal - Update community image 4 Mar O Maruf Bepary 67b529fe
Created separate icon component - This component will be used by the community h... 14 Mar 202318:47 Maruf Bepary 80c1d2a1
Fixed post item details showing author and time 4 Mar202317:52 Maruf Bepary 7bbfdbcO
Added modal to view profile details - View profile picture if available - View details ifa... 14Mar 202317:48 Maruf Bepary 1451eb87
Added profile picture an user menu button 14 Mar 2 15 Maruf Bepary

Centere s more button on communities page 14 Mar 4. Maruf Bepary

origin/styling | Fixed half shadow on single post page - Added full shadow 14 Mar 314:49 Maruf Bepary
ided hover outline ta post creation inputs 14 Mar :34 Maruf Bepary 4bdbec8c
Made post link consistent with the rest of the app - Changed hover outline tared - Ma... 14 Mar202314:27 Maruf Bepary 0e4110c4
Adjusted shadows - Change background colour to make shadows more visible - Puts... 14 Mar202314:25 Maruf Bepary c34694f1

features in | Added shadows to components across the site 13 Mar 202323112 Maruf Bepary 67b2ce0e

Bug Fix: delete button was available for all users - All users could delete posts - Even ... 12 Mar 2023 00:03 Maruf Bepary bf2e5024

40




Discussion Platform Maruf Bepary

This example highlights the existence of multiple Git branches as multiple tasks and features were
being developed independently at the same time.

Tags

Tags were also created for marking milestones for each feature that was implemented [66]. This
helped to keep track of the progress of the project and allowed for easy identification of important
changes or additions to the codebase [66]. This was vital for tracking the complete history of the
features that were implemented such as authentication, communities, posts, etc, without viewing
the commits leading to these functionalities. It also made it easier to roll back to a previous version
of the codebase if necessary [66].

1_authentication | origin 1.6 | Added documentation 31Jan202318:26 Maruf Bepary
1.5 | Added reset password functionality - Display reset password option on login... 31Jan202315:10 Maruf Bep:
Installed required icons 31Jan 2023 14:54 Maruf Bepary 8ca5b76d
1.4 | Created separate logout button components 31Jan202314:26 Maruf Bepary 4b948f8d
Addec t button - Clears Firebase auth state 31Jan 20231418 Maruf Bepary 772edcee
31 Jan 314:05 Maruf Bepary 4506850d
1.3 | Implemented logging in with email and passwor 31Jan202314:03 Maruf Bepary acB8431ff
Fixed variable spelling error 31Jan 202314:02 Maruf Bepary ef873
1.2 | Added third party i oogle - GitHub 0 2 4 Maruf Bepary

1.1 | iImplemented signup using email and password 30 Jan 202 Maruf Bepary

Added React Firebase Hooks for communicating with Firebase easily without crating ...  3C 2 0 Bepary

Added Firebase configuration 3 2 :28 Maruf Bepary

Added example env file ! 2 :25 Maruf Bepary

This example demonstrates the different functionalities and sub-functionalities of the authentication
system. Each tag shows the exact functionality that was implemented making it easier to locate.

Collaboration

Using Git in this way will be especially beneficial as the project is going to be open source and
other developers interested in the project can participate. By having a clear and organized history of
the codebase, it will be easier for other developers to understand the project and contribute to it
[67]. They can easily identify the changes made to the codebase and track the progress of the
project [67]. The use of tags will also make it easier for other developers to identify important
milestones in the development process [67]. Additionally, the use of Git will allow for easy
collaboration between developers, ensuring that the project can continue to evolve and improve
over time [67].

3.3.2 Remotes

One major benefit of using a remote for Git, such as GitHub or GitLab, is the ability to collaborate
with other developers [68]. With a remote repository, multiple developers can work on the same
codebase simultaneously, and all changes can be tracked and merged seamlessly [68]. This allows
for efficient collaboration, even when team members are working remotely or in different time
zones [68].

Another advantage of using a remote for Git is the ability to share code with other developers and
the broader open source community [68]. With a remote repository, developers can easily share
their code with others, allowing them to contribute to the project and providing opportunities for
peer review and feedback [68].

41




Discussion Platform Maruf Bepary

Using a remote also enables easy backups and disaster recovery [68]. By storing copies of the
repository in the cloud, developers can ensure that their code is always backed up and available
even in the event of hardware failure or other disasters [68].

Finally, a remote Git repository allows for easy deployment of software [68]. By creating different
branches of the codebase, developers can manage different environments such as development,
testing, and production, making it easier to ensure that the correct version of the code is being used
in each environment [68]. This can help to minimize errors and bugs in the deployed software [68].

42



Discussion Platform Maruf Bepary

3.4 Code Quality

Code quality is a measure of how well-written, readable, maintainable and reliable a piece of code
is [69]. Code quality can affect various aspects of software development, such as performance,
security, usability and scalability [69]. Code quality is important because it can have a direct
impact on the success and satisfaction of the end-users, as well as the efficiency and productivity of
the developers [69][71]. Code quality can be improved by following coding standards and best
practices, using code analysis tools and testing frameworks, conducting code reviews and
refactoring regularly [69][71].

3.4.1 Linting

A linter is a tool used in software development to analyse source code and flag programming
errors, bugs, stylistic errors, and suspicious constructs [70][71]. It can detect potential bugs, syntax
errors, uses of undeclared variables, calls to undefined or deprecated functions, and other
programming issues [70][71] Linters perform static analysis, enforce configuration flags, check for
compliance with style guides or security rules, and much more [70][71].

Linters are used to improve code quality and reduce errors before execution [70]. They can
improve readability, remove silly errors before execution and code review, create consistency, give
visibility of codebase health, spread awareness and ownership over code quality, and control
technical debt [70]. Linters help to standardize code and enforce best practices, ensuring that the
code is more maintainable and efficient, and can save time by reducing the need for manual code
reviews. This consistency makes it much easier for other developers to collaborate [70].

First Prototype (Python)

The first prototype of this project was based on Python (Flask) hence the appropriate linter was
selected. Flake8 was chosen as the preferred linter over PyLint due to its advantages [71]. Firstly,
Flake8 is easier to use and is more configurable than PyLint [71]. Flake8 also has superior plug-in
support, which means that it can be customized to meet the specific needs of the development team
[71]. Additionally, Flake8 is faster than PyLint, which is an important factor when working on
large codebases [71]. Although PyLint is more comprehensive than Flake8, its strictness can be a
disadvantage, and it can be time-consuming to configure camel cases for some codebases [71]. On
the other hand, Flake8 is not as strict as PyLint, but it can be configured to be more strict if needed
[71].

Current Project (Next.JS & TypeScript)

For the current project stack which is based on Next.JS. ESLint was chosen because it is the most
flexible and extensible of the four JavaScript linters compared [72]. It comes with a large number
of custom rules and is easy to install more in the form of plugins [72]. ESLint also includes many
rules that are not available in other linters, making it more useful for detecting problems [72].
Additionally, it has the best support for ES6 and is the only tool that supports JSX. The output is
easy to understand, and it supports custom reporters [72]. Although some configuration is required,
the article does not mention this as a significant disadvantage [72]. The article also notes that JSCS
only detects coding style violations and not potential bugs, while JSLint and JSHint are less
flexible and less extensible than ESLint [72].

The alternatives were not chosen for various reasons. JSLint lacks customization options and has
limited configuration options [72]. JSHint is more difficult to configure compared to ESLint and
does not support custom rules. JSCS only detects coding style violations and not potential bugs or
errors, which may be important for some projects [72].

43



Discussion Platform Maruf Bepary

3.4.2 Unit Testing

Unit testing is a software development practice that involves testing individual units of code in
isolation to ensure that they function correctly [59]. By writing automated tests for individual
functions, classes, or modules, developers can identify and correct errors early in the development
process, leading to better code quality [59].

These are some ways that unit testing leads to better code quality:

e Farly detection of bugs: Unit testing allows developers to catch bugs early in the
development process. By testing individual units of code in isolation, developers can
identify and fix errors before they impact other parts of the system. This leads to better
code quality and reduces the likelihood of bugs in the final product [59].

e Increased confidence in code changes: Unit tests provide a safety net for developers when
making changes to the codebase. When a change is made, the relevant unit tests can be run
to ensure that the change does not introduce any new bugs or regressions. This increases
developers' confidence in their changes and reduces the likelihood of introducing bugs into
the codebase [59].

e Facilitates refactoring: Unit tests also make it easier to refactor code by providing a way to
ensure that the code still functions correctly after changes have been made. By running unit
tests after each refactoring step, developers can ensure that the code still functions correctly
and that any changes have not introduced new bugs [59].

e Better code structure: Writing unit tests requires developers to break down their code into
smaller, more manageable units. This encourages developers to write code that is more
modular and easier to maintain, leading to better code structure and organization [59].

e Better documentation: Unit tests can serve as a form of documentation for the codebase.
By reading the tests, developers can understand how the code is intended to function and
how it interacts with other parts of the system. This makes it easier for developers to work
with the codebase and reduces the likelihood of errors [59].

Overall, unit testing is a valuable tool for ensuring code quality. By catching bugs early in the
development process, increasing developers' confidence in code changes, facilitating refactoring,
encouraging better code structure, and serving as documentation, unit testing leads to better code
quality and a more reliable final product. Testing methodologies are discussed in the Testing
section.

3.4.3 Code Architecture

Code architecture is the practice of designing and organizing the structure of the codebase in a way
that makes it easy to understand, maintain, and scale [73]. It is a critical practice that leads to better
code quality by improving the readability, maintainability, and scalability of the codebase [73].

These are some reasons why code architecture is important and leads to better code quality:

e Improved code organization: Code architecture makes it easier to organize the codebase in
a way that makes it easy to understand and navigate. By grouping related code together and
separating unrelated code, developers can quickly find the code they need, which reduces
the likelihood of errors and bugs [73].

e Fasier maintenance: Code architecture also makes it easier to maintain the codebase over
time. By designing the codebase in a way that is modular and easy to understand,
developers can quickly identify potential issues, debug the code, and fix bugs, which saves
time and effort [73].

e Better scalability: Code architecture helps to facilitate scalability by making it easier to add
new features and modify existing ones. By designing the codebase in a way that is flexible
and easy to modify, developers can quickly make changes to the codebase, which reduces
the time and effort required to scale the application [73].

44



Discussion Platform Maruf Bepary

e Improved collaboration: Code architecture helps to facilitate collaboration among
developers by making it easier for them to understand and work with each other's code. By
designing the codebase in a way that is consistent and well-organized, developers can work
together more efficiently, which leads to better code quality and faster development cycles
[73].

e Better code quality: By improving the organization, maintenance, scalability, and
collaboration of the codebase, code architecture leads to better code quality overall. This
reduces the likelihood of errors and bugs, which improves the stability and reliability of the
application [73].

The architecture of this project has been designed to be as modular as possible decreasing coupling
and allowing flexibility. This is discussed in more detail in the Diagram Detailing Architecture of

the Whole System section.

Overall, code architecture is an important practice that leads to better code quality by improving the
organization, maintenance, scalability, and collaboration of the codebase. By making it easier for
developers to understand, maintain, and work with the code, code architecture reduces the
likelihood of errors and bugs and improves the stability and reliability of the application. Therefore,
developers should prioritize code architecture as a key practice in their development process.

3.4.4 Code Refactoring

Code refactoring is the process of restructuring existing code without changing its external
behaviour [74]. It is a critical practice that leads to better code quality by improving the readability,
maintainability, and scalability of the codebase [74].

These are some reasons why code refactoring is important and leads to better code quality:

e Improved code structure: Code refactoring involves breaking down large and complex
code structures into smaller, more manageable units. By doing so, code becomes more
modular and easier to maintain, understand, and extend. This results in a cleaner codebase
that is easier to work with and reduces the likelihood of bugs and errors [74].

e Better performance: Refactoring can also improve the performance of the codebase by
optimizing algorithms and improving data structures. By identifying and addressing
performance bottlenecks, developers can create a more responsive and efficient application
[74].

e Code reuse: Refactoring also makes it easier to reuse code across the application. By
creating more modular and reusable code, developers can save time and effort by not
having to re-write code that has already been written [74].

e Increased maintainability: Code refactoring makes it easier to maintain the codebase over
time. By improving the code structure, it becomes easier to identify and fix bugs, add new
features, and modify existing functionality [74].

e Reduced technical debt: Technical debt is the cost of maintaining existing code that is hard
to understand, modify or maintain. Refactoring can help to reduce technical debt by
improving the code structure and making it easier to maintain, which leads to cost savings
in the long run [74].

In this project, the codebase has been refactored several times to achieve the points made above.
React components have been split into sub-components (children) and common functionalities
between components have been encapsulated into React hooks which can be called, more on hooks
in the Design Patterns section.

Overall, code refactoring is an important practice that leads to better code quality by improving the

structure, performance, maintainability, and scalability of the codebase. By making the codebase
more modular, easier to understand and maintain, refactoring reduces the likelihood of bugs and

45



Discussion Platform Maruf Bepary

errors and increases developer productivity. Therefore, developers should prioritize code
refactoring as a key practice in their development process.

3.4.5 Code Documentation

Code documentation refers to the process of providing descriptive and explanatory text about the
codebase to help developers understand the code and how it works [75]. It is a critical practice that
leads to better code quality by improving the readability, maintainability, and scalability of the
codebase [75].

These are some reasons why code documentation is important and leads to better code quality:

e Improved code understandability: Code documentation makes it easier for developers to
understand how the code works and how it is intended to be used. By providing clear and
concise explanations of code functionality, developers can quickly grasp the purpose of the
code, which reduces the likelihood of errors and bugs [75].

e Easier maintenance: Code documentation also makes it easier to maintain the codebase
over time. By providing documentation that explains the code structure, developers can
quickly identify potential issues, debug the code, and fix bugs, which saves time and effort
[75].

e Improved collaboration: Code documentation helps to facilitate collaboration among
developers by making it easier for them to understand and work with each other's code. By
providing documentation that explains how the code works and how it is intended to be
used, developers can work together more efficiently, which leads to better code quality and
faster development cycles [75].

e Easier onboarding: Code documentation helps new developers to quickly become familiar
with the codebase, which reduces the learning curve and improves their productivity. By
providing clear and concise explanations of the code structure, developers can quickly
grasp the purpose of the code and begin contributing to the codebase [75].

e Better code quality: By improving the understandability, maintainability, and collaboration
of the codebase, code documentation leads to better code quality overall. This reduces the
likelihood of errors and bugs, which improves the stability and reliability of the application
[75].

In this project, documentation has been taken extremely seriously. Each functionality, hook and
component has been documented using the JSDoc and its best practices. Documentation for the
entire project as a whole has also been written in the form of the main ReadMe file and the project
Wiki.

Overall, code documentation is an important practice that leads to better code quality by improving
the understandability, maintainability, and collaboration of the codebase. By making it easier for
developers to understand, maintain, and work with the code, code documentation reduces the
likelihood of errors and bugs and improves the stability and reliability of the application. Therefore,
developers should prioritize code documentation as a key practice in their development process.

3.4.6 Design Patterns

Design patterns are proven solutions to common software development problems that can be reused
across different projects [76]. They are important in software development because they can help to
improve the quality of the codebase by providing a consistent, reliable and maintainable way of
solving problems [76].

These are some reasons why design patterns are important and lead to better code quality:
e Encourage best practices: Design patterns promote best practices in software development.

They encourage developers to use well-established and proven solutions to common

46



Discussion Platform Maruf Bepary

problems, rather than reinventing the wheel. This leads to code that is more maintainable,
reliable, and scalable [76].

e Reusability: Design patterns are reusable solutions that can be used across different
projects. By using design patterns, developers can create code that is more modular and
easier to maintain, reducing the likelihood of errors and bugs. They also reduce
development time by providing a consistent and reliable solution to a problem [76].

e Improves readability: Design patterns help to make the codebase more readable and easier
to understand. By using well-established patterns, developers can create code that is easier
for other developers to understand and work with, reducing the likelihood of errors and
bugs [76].

e Scalability: Design patterns help to promote scalability by providing solutions that can be
easily modified and extended. This allows developers to create code that is more flexible
and adaptable, reducing the time and effort required to scale the application [76].

e Promotes collaboration: Design patterns help to promote collaboration among developers
by providing a common language and approach to solving problems. This allows
developers to work together more efficiently, which leads to better code quality and faster
development cycles [76].

Design pattern rules have been followed to ensure that the codebase is of high quality ensuring that
it meets the requirements listed above. The design patterns used are discussed in detail in the

Design Patterns section.

Overall, design patterns are an important practice that leads to better code quality by promoting
best practices, reusability, readability, scalability, and collaboration. By providing consistent and
reliable solutions to common problems, design patterns reduce the likelihood of errors and bugs
and improve the stability and reliability of the application. Therefore, developers should prioritize
the use of design patterns as a key practice in their development process.

3.5 Organising Tasks

Tasks have been organized using the built-in features of GitLab.
Issues

The Issues feature has been used to keep track of features that may need to be implemented and
what bugs have been found [77]. For each issue, it is possible to discuss possible ways of solving
the issue with members of the team (if available) or the supervisor [77]. The issues also keep track
of any pull requests, merges or commits that are mentioned that could have possibly fixed the bug
or implemented the issue [77]. Once the issue is fixed, it can be closed indicating the bug has been
fixed or the feature has been implemented [77]. Moreover, issue templates have been created to
force a more consistent structure for issues: a template for bugs was implemented specifically for
reporting bugs, this forces issuers to organize their issues in a consistent manner and ensures that
all the information required is provided [77]. A feature template was also created the ensuring
feature requests are structured in a consistent fashion and important information is provided [77].

Boards

The Boards feature has been used as a todo list to keep track of the features that need to be
implemented. This makes it easier to organize code and help the supervisor and the developer
understand what features have been implemented and what is yet to be implemented [77].
Additionally, each entry creates an issue which can then be used to discuss and document strategies
to implement said features. Furthermore, once a pull request is merged, this issue can be closed,
hence keeping track of what pull requests (and collections of commits) were used to resolve the
issue [77].

47



Discussion Platform Maruf Bepary

Milestones

Other GitLab features can potentially be used in the future for organizing and keeping track of
tasks and milestones even more efficiently [78]. For example, GitLab’s Milestone feature can be
used; each time there is a major milestone that is met (such as features), and the code is merged for
it, a milestone can be ticked off, these milestones can be a group of features, for example, the
communities milestone has multiple features such as creating a community, deleting a community,
subscribing to a community and unsubscribing to a community, all these can be grouped into a
single major milestone [78].

Requirements
Another GitLab feature that can be implemented is the Requirements feature [78]. The
requirements of the project can be specified here and the progress of the features can be compared

against the requirements. This helps ensure that the project is meeting the original scope of the
project and that all the criteria are met without implementing any unnecessary features first [78].

48



Discussion Platform Maruf Bepary

3.6 Deployment

Deploying a website is the process of making a website accessible to the public on the internet [79].
It is done to share information, products, services or other content with a wider audience [79]. To
deploy a website, one needs to have a domain name, a web hosting service and the website files.
The domain name is the address of the website that users type in their browsers [79]. The web
hosting service is the provider that stores the website files on a server and delivers them to the
users' browsers. The website files are the code and content that make up the website [79].

Self Hosting

Self-hosting is the process of setting up and managing your own server to host your website [80].
This option provides complete control over the server and the website, but also requires a high
level of technical expertise and can be time-consuming and expensive to set up and maintain. Some
popular self-hosting providers include DigitalOcean, Vultr, and Linode [80]. The advantages of
self-hosting include complete control over the server and the website, the ability to customize the
server and website to meet specific needs, and the ability to scale resources as needed [80]. The
disadvantages include the need for technical expertise to set up and maintain the server, the cost of
hardware and software, and the time required to manage and maintain the server [80].

Shared Hosting

Shared hosting is a cost-effective solution for hosting a website, where the resources available on
the server are shared among multiple users [80]. Some popular shared hosting providers include
Bluehost, HostGator, and SiteGround [80]. The advantages of shared hosting include low cost, ease
of use, and no need for technical expertise. The disadvantages include limited performance and
stability due to shared resources, limited customization options, and limited scalability [80].

Virtual Private Server (VPS)

A virtual private server (VPS) is a type of hosting that provides more resources and stability than
shared hosting, but still requires a high level of technical expertise to set up and maintain [80].
Some popular VPS providers include AWS, Google Cloud, and Microsoft Azure [80]. The
advantages of a VPS include better performance and stability compared to shared hosting, the
ability to customize the server and website to meet specific needs, and the ability to scale resources
as needed [80]. The disadvantages include the need for technical expertise to set up and maintain
the server, the cost of hardware and software, and the time required to manage and maintain the
server [80].

Managed Hosting

Managed hosting is a fully managed solution for hosting a website, where the provider takes care
of all the technical details, including server setup, maintenance, and security. Some popular
managed hosting providers include Heroku, WP Engine, and Pantheon [80]. The advantages of
managed hosting include ease of use, no need for technical expertise, and the ability to focus on
developing and promoting the website rather than managing the server [80]. The disadvantages
include higher costs compared to other options, limited customization options, and a lack of control
over the server and website [80].

Vercel is a managed hosting provider that specializes in hosting and deploying modern web
applications, including Next.JS applications [80]. Vercel offers a fully managed solution for
hosting and deploying websites, and it provides a number of advanced features and functionalities
that make it well suited for modern web development [80]. The advantages of using Vercel include
ease of use, seamless integration with Next.JS, and a range of advanced features and functionalities
[80]. The disadvantages include limited customization options and a higher cost compared to other
options [80].

49



Discussion Platform Maruf Bepary

Chapter 4: End System Development

4.1 Architecture of End System

4.1.1 Design Patterns

Design patterns are general solutions to common problems that arise in software development [76].
They provide a reusable and flexible way of structuring code, making it easier to maintain, extend
and test [76]. Design patterns also help developers communicate their design ideas more
effectively, as they can refer to well-known and established concepts instead of explaining every
detail [76]. Design patterns are important because they improve the quality and efficiency of
software systems, as well as the productivity and collaboration of developers [76].

React Components (Composite Pattern)

React components follow the design pattern of the Composite pattern [82]. The Composite pattern
is a structural design pattern that is used to represent a part-whole hierarchy [82]. In the Composite
pattern, individual objects are treated the same as compositions of objects, making it easier to
manage a tree-like structure of objects [82].

In React, components can be nested within each other to form a hierarchy of components [82].
Each component can be treated as an individual object, or a composition of smaller components
[82]. This allows for complex UI to be constructed from simple building blocks and makes it easier
to reuse and manage components [82].

Below is an example that demonstrates a parent navbar component which has several children
components that are its building blocks [82]. State is passed down from this parent component
down to its children which allows this navbar to be more modular [82].

const Navbar: React.FC = () => {
const [user, loading, error] =
const { onSelectMenultem } =

useAuthState (auth) ;
useDirectory () ;

return (
<Flex

bg="white"
height="50px"
padding="6px 10px"
justify={{ md: "space-between" }}
position="sticky"
top="4px"
zIndex="999"
// Rounded props
border="1px solid"
borderColor="gray.300"
borderRadius={10}
m={{ base: 1, md: 1.5 }}

shadow="1g"
>

<Flex
align="center"
width={{ base: "40px", md: "auto" }}
mr={{ base: 0, md: 2 }}
onClick={ () => onSelectMenultem (defaultMenultem) }
cursor="pointer"

>

50




Discussion Platform Maruf Bepary

{/* Logo which is always visible */}
<Image src="/images/logo.svg" height="30px" alt="Website logo"
ml={1} />

{/* Logo name not visible on mobile */}
<Image
src="/images/logo_ text.svg"
height="30px"

display={{ base: "none", md: "unset" }}
alt="Website text logo"
/>
</Flex>

{/* Community directory only visible when user is logged in */}
{user && <Directory />}
<SearchInput />
{/* Changes depending on whether user is authenticated or not */}
<RightContent user={user} />
</Flex>
) ;
b

The use of the Composite pattern in React components allows developers to think about the Ul in
terms of small, reusable components, rather than a single, monolithic structure. This makes it easier
to build and maintain applications, as changes can be made to individual components without
affecting the rest of the application.

This design pattern is important because it promotes the reuse of code and makes it easier to
manage the structure of an application [82]. It also makes it easier to test components in isolation,
as each component can be treated as a separate entity [82].

React Hooks (Higher-Order Components)

React Hooks follow the design pattern of Higher-Order Components (HOCs) and Render Props
[83]. These design patterns are used to share logic between components, making it easier to reuse
code and manage the state of an application [83].

1. Higher-Order Components (HOCs): An HOC is a function that takes a component as an
argument and returns a new component with additional props. HOCs allow developers to
wrap a component with additional functionality, such as data fetching or theme
management, without having to modify the original component. In React Hooks, the
useState and useEffect hooks can be considered as HOCs that provide state management
and side-effect logic to a component [83].

2. Render Props: Render Props is a design pattern that allows a component to pass a function
as a prop to another component, which then gets called to render the Ul In React Hooks,
the useContext hook provides similar functionality, allowing components to access and
update the context data [83].

Both of these design patterns are beneficial because they provide a way to share logic between
components, making it easier to manage the state of an application and reuse code. They also make
it easier to test components in isolation, as the state management and side effects are separated
from the Ul logic.

below is an example of a hook that handles selecting a file from the user’s file system. This hook is
used in various places such as when selecting an image for a post, community icon and user’s
profile picture. Because of this common functionality, a singular hook has been created that
handles selecting the file, checking whether it is an image, checking whether it is within the file
size limits and checking whether it is the correct size (profile pictures are smaller than post
images). This hook is then called in the required places.

51




Discussion Platform Maruf Bepary

const useSelectFile = (maxHeight: number, maxWidth: number) => {
const [selectedFile, setSelectedFile] = useState<string>();
const onSelectFile = (event: React.ChangeEvent<HTMLInputElement>) => ({
const onSelectFile = (event: React.ChangeEvent<HTMLInputElement>) => ({

// Logic for uploading and handling files removed due to length of

the code
}

}:
return {
selectedFile,
setSelectedFile,
onSelectFile,
i
i
export default useSelectFile;

const { selectedFile, setSelectedFile, onSelectFile } = useSelectFile(
300,

300

)7

Selecting a file when creating post

Create Post

B Post 3 Images

< Back to Fedora

Upload Content

Selecting a file when changing community icon

52



Discussion Platform Maruf Bepary

Community Settings

Fedora

m Deistemaps

Community Type

Select option

Selecting a file when changing user profile picture

Profile X

Maruf Bepary

User Name

(e ) GEEETEE

In conclusion, React Hooks provide a more concise and flexible way to manage state and share
logic between components compared to the traditional HOCs and Render Props design patterns. By
using React Hooks, developers can write cleaner and more maintainable code, making it easier to
build and scale applications [83].

State Management (Flux Design Pattern)

The design pattern used for managing the state in React is the Flux design pattern [84]. The Flux
design pattern is a unidirectional data flow architecture that is used to manage the state of
applications [84].

In Flux, the state of the application is stored in a centralized store, and components can only update
the state through actions that are dispatched to the store [84]. The store then updates its state, and
the components that depend on the state are re-rendered to reflect the changes. This ensures that the
state of the application is always consistent and predictable [84].

React implements this design pattern through its use of the setState function, which allows
components to update their state and trigger a re-render of the UI [84]. The useState hook provides
a convenient way to manage the

53




Discussion Platform Maruf Bepary

state in functional components, making it easier to write clean and maintainable code [84].

This design pattern is important because it helps to maintain the integrity of the state of an
application and ensures that the state updates in a predictable manner [84]. It also makes it easier to
debug and test applications, as the state is managed in a centralized store and the flow of data is
unidirectional [84].

The example below demonstrates how Recoil was used as a centralised system for managing the
state of the authentication modal across the app. Some user interactions or events would cause the
state to change, opening or closing it. This is because multiple events can trigger it open for
example, clicking the authentication buttons (in the navbar), voting on a post without being signed
in, trying to comment without being signed in or creating a post without being signed in.

import { atom } from "recoil";

export interface AuthModalState ({
open: boolean;
view: "login" | "signup" | "resetPassword";

}

const defaultModalState: AuthModalState = {
open: false,
view: "login",

}i

export const authModalState = atom<AuthModalState> ({

key: "authModalState", // unique identifier for the atom
default: defaultModalState,
)

State Management (Observer)

The Observer design pattern is a behavioural pattern that enables communication between objects
in a way that is loosely coupled and easy to maintain [76]. This pattern is useful in situations where
one object needs to notify a group of other objects of changes in its state, without having to know
anything about those objects [76].

The Observer pattern is used extensively in modern web development, particularly in the context of
user interfaces. In a web application based on React, the Observer pattern can be used to manage
the state of the application and ensure that changes to the state are reflected in the user interface
[76].

The basic idea behind the Observer pattern is that there is a Subject object that maintains a list of
Observers [76]. When the Subject changes state, it notifies all of its Observers of the change,
allowing them to update their state accordingly [76].

In a React application, the Subject object can be represented by a state manager, such as Recoil or
the Context API. The Observers can be represented by React components that are interested in
changes to the state managed by the state manager. In this example, the auth state defined by
Firebase tracks the authentication status of the user (whether a user is signed in or not) and the
entire application would observe it and depending on this status, the application components would
behave differently. An example of such behaviour is displaying the authentication buttons if the
user tries to create a post when signed out.

|const [user, loading, error] = useAuthState (auth);

54



Discussion Platform Maruf Bepary

Trying to create a post without logging in

“ Circus Cosn ) QEEITED © -

Create Post

Subscribers Created

Log in or sign up to post 0 Feb 25,2023

[ sinue create ot

Trying to create a post while logged in

% Circus @ redora - ® + @ vorutoermy -

About Fedora

Create Post

Subscribers Created
0 Feb 25,2023

Create Post
< Back to Fedora .
( Community Settings ]

[ B Post } 3 Images

Multiple Items using the Same React Component (Iterator)

The iterator pattern is a software design pattern that provides a way to access the elements of an
aggregate object sequentially without exposing its underlying representation [76]. This pattern is
commonly used to iterate over a collection of objects and perform some operation on each element
[76].

In the context of rendering a single React component multiple times with new data, the iterator
pattern can be used to simplify the process of rendering a list of items [76]. Instead of manually
creating individual components for each item in the list, we can create a single generic component
and use iteration to render it with the data for each item [76].

For example, let's consider a Postltem component that displays a single post with its title, content,
post votes and author. To render multiple posts using this component, we can fetch the post data
from Firestore and create an array of post objects. We can then use the map function to iterate over
the array and render a Postltem component for each post object, passing in the data for that post as

props.

<Stack spacing={3}>
{postStateValue.posts.map ((item) => (
<PostlItem

55




Discussion Platform Maruf Bepary

key={item.id}
post={item}

userIsCreator={user?.uid === item.creatorId}
userVoteValue={
postStateValue.postVotes.find((vote) => vote.postId === item.id)

?.voteValue
}
onVote={onVote}
onSelectPost={onSelectPost}
onDeletePost={onDeletePost}
/>
)}
</Stack>

Multiple posts being rendered using the same component by iterating over available posts objects

’ MarufCircus By bepary71 a few seconds ago
0 Post3
¥ This is the third post

% Share save 0 Delete

2 . MarufCircus By bepary71 a few seconds ago
0  Post2
This is the second post
% Share L] save 0 Delete
’ MarufCircus By bepary71 a few seconds ago

0 Thisis a test post
Y Thisis a description for a post that was just created

. Share Save 0 Delete

The same approach can be used to render comments within posts and lists of communities, using a
generic component for each type of item and iterating over an array of objects to render multiple
instances of the component with different data.

4.1.2 Diagram Detailing Architecture of the Whole System

The system architecture diagram depicts how the various sub-systems in the project function
independently to deliver the required functionality. The three primary services that have been used
in the project are Authentication, Firestore Database, and Storage. The logic implemented using
TypeScript interacts with these Firebase services to perform specific actions, such as creating a
new user in Firebase and adding a corresponding user object in the database when a user signs up.

To illustrate how a particular functionality, such as creating a post, works in this architecture, let's
consider the following steps:

1. The user interface captures the data for the new post through a form. This data is used to
update the state of the form.

2. The community logic then captures the updated form state and tries to create a new post. It
performs any necessary checks and validation to ensure the data provided is valid.

3. Once the post data is validated, the post's title and description are stored in the Firestore
database. If there is an image associated with the post, it is uploaded to Firebase Storage,
and the image link is stored in the database as well.

56




Discussion Platform Maruf Bepary

4. The view posts logic then updates the Recoil state of the application to reflect the new
post's addition. This update is observed by the components and pages in the user interface,
which update themselves accordingly.

By implementing this architecture, the system functions efficiently, and changes to data or state are
propagated to all relevant components without any manual intervention. The system remains
loosely coupled and easy to maintain, with each sub-system handling its responsibilities
independently. Overall, this architecture ensures that the application is scalable, robust, and capable
of meeting the evolving needs of the user base.

UML Diagram
Recoll State
Authentication Logic
Authentication
state
— — — — — React interface
signup ‘ LogIn ‘ Reset Password | | ,Third Party Ferd) ‘ Components
Firebase Backend - bt
« Navbar
« Communiy header
Community Logle L Commundtics « Recommendations
B Skl « Authentication modal
Authentication « Profile management modal
« Community creation modal
g e | + Community settings modal
« Posts
f Create Modity Subscribe/ | | ) =B
« Post creation
Firestore —
Database N |
Post Logic
Posts T
—_’/ Faam
Storage = « Home page
Create Delete Vote on View = ;Communifes
Post Community Post Posts = :on;mumv Ppage
« Postpage
Comment Logic Comments
State
Create Delete View
Comment Comment Comments

57



https://drive.google.com/file/d/1ZPDz7WRW9IQxJxf3GukpIK5bempVOoN1/view?usp=sharing

Discussion Platform Maruf Bepary

4.2 Database Design

4.2.1 Relational Database (SQL)

As mentioned before, the first ‘prototype’ system used a relational database for modelling the data
(see Back-End Technologies for the rationale behind the choice).

below is the original relational database that was used with the first system [48]. This can
potentially be useful as it can be reused if the system is migrated again to a relational database, for
example if switching to Supabase (see Back-End Technologies). In this case, this schema would be
used as a baseline as it not feature complete to allow for implementing the rest of the features. This
database has not been expanded as a non-relational database was used for the final system.

Achieving ACID compliency is extremely important to ensure the database is robust [85]. ACID
(Atomicity, Consistency, Isolation, Durability) is a set of principles that ensures the reliability and
consistency of data in a database [85]. A database that adheres to ACID properties provides several
benefits, including: allowing multiple people to work on the database without any concerns,
reducing the need for manual debugging, and providing an error-free database at all times [85].

Atomicity requires that transactions (such as the insertion or deletion of data) are executed
completely or not at all, and that the transaction is only visible to other users when it is fully
executed [85]. Consistency requires that each transaction moves the database from a consistent
state to another consistent state, ensuring that the database does not contain any conflicting data
[85]. Isolation ensures that multiple transactions occurring simultaneously result in the same
outcome as if they had taken place one after the other, without affecting the final state of the
database [85]. Durability requires that data within the database can only be changed as a result of a
transaction and is not changeable by external influences, such as power failures or software updates
[85].

In conclusion, compliance with ACID properties makes a database reliable and consistent, allowing
multiple users to access and work on the database without any concerns, reducing manual
debugging, and protecting the data from external influences [85].

Ausercan ibe to many ities and a ity can have many users

Description

User who creates post is not always the same as the ones who reply hence separ.

Explanation of the Database

The system will have users who will interact with the website. This user entity will have many
other fields such as email, password and authentication provider but here the base dependencies
will be discussed. Each user will have a username which will be publicly viewable by other users
when the user makes posts or comments.

58




Discussion Platform Maruf Bepary

The community entity in the database allows users to create and subscribe to multiple communities.
These communities can have multiple users who can subscribe to them, giving them access to the
community's posts. The communities can have different visibility settings, including public (where
anyone can view and post), restricted (where anyone can view but only subscribers can post), or
private (where only subscribers can view and post). However, this feature was not implemented in
the database to capture the different visibility settings.

The posts entity in the database represents the content created by users in the communities. Each
community will have many posts, but each post only belongs to one community. The posts contain
a title, content, and other metadata. Users create posts in a community, which other users can then
comment on. This means that a post is created by one user, but a user can create many posts, each
belonging to a different community. However, this version of the database does not account for
users voting on the post or allowing tags.

The comments entity in the database allows users to respond to the posts. Each comment belongs to
both the user who created it and the post it is commenting on. Additionally, each comment can be
replied to by another comment, creating a hierarchy of comments. This means that a comment can
only belong to a post and optionally to one other comment. The functional dependencies described
capture the use cases of the site, including the relationship between the comments, users, and posts.

Normalization

Normalisation is a process of organising the data in a database to avoid redundancy, inconsistency
and anomalies [85]. Normalisation involves dividing the data into smaller and simpler tables that
are linked by relationships. The benefits of normalisation are:

e [t reduces the amount of storage space needed for the data [85].

e [t improves the performance and efficiency of queries and updates [85].

e It ensures the integrity and consistency of the data by avoiding duplication and conflicts
[85].

e [t facilitates the design and maintenance of the database schema by following a set of rules
and principles [85].

below is the Mathematical calculations used to normalize the database design to achieve ACID
complacency. First Normal Form (1NF) is achieved simply by splitting cells in the database and
does not require any mathematical calculation.

Functional Dependencies

Functional dependencies are a way of expressing constraints or rules that apply to the data in a
database. A functional dependency means that the value of one attribute (or a set of attributes)
determines the value of another attribute (or a set of attributes) [86]. For example, if we have a
table with student names and IDs, we can say that the student ID functionally determines the
student name, because each ID is associated with exactly one name. Functional dependencies are
useful for designing and normalizing databases, as they help to avoid data redundancy and
inconsistency.

These are the functional dependencies for modelling the data in the database. This will be
normalized using various normalization techniques such as Second Normal Form (2NF), and Third
Normal Form (3NF).

R(user id, username, user name, community id, community name,
community description, post id, post content, post edit status,
post creation, comment id, comment content, tag id, tag name)

FD = {
user id — username, user name,

59




Discussion Platform Maruf Bepary

community id - community name, community description, user id
(Creator),

post _id - user id (Author), post content, post edit status,
post creation, community id

comment id - comment content, post id, user id

tag_id - tag name,

community id, post id

community id, user id

post id, comment id

post id, user id

post _id, tag id

comment id, user id

comment id (Comment), comment id (Sub-comment)

}

Closures

Closures are a property of relational databases that allow queries to be composed and nested
without losing information. A closure means that applying a relational operator to one or more
relations produces another relation as a result. This allows complex queries to be built from simpler
ones using operators such as selection, projection, join, union, intersection and difference.

(user id) = {**user id**, username, user name}

(community id) = {
**community id**, community name, community description,
*user id*, username, user_name

}

(post_id) = {
**post id**, post content, post edit status, post creation,
*community id*, community name, community description
*user id*, username, user_name

}

(comment id) = {
**comment id**, comment content,
*post_id*, post content, post edit status, post creation,

*community id*, community name, community description

*user id*, username, user_name

}

(tag) = {**tag id**, tag name}

comment id = user id + community if + post id + comment content
tag id + comment id = user id + community id + post id + comment content
+ tag_name

(comment id, tag id) = {
**comment id**, comment content,
**tag id**, tag name,
*user id*, username, user_name,
*community id*, community name, community description,
*post_id*, post content, post edit status, post creation

}

Relation

Relationships between entities are a way of describing how different types of data are connected in
a database. For example, a customer entity and an order entity may have a relationship that
indicates that each customer can place many orders, and each order belongs to one customer.
Relationships can be one-to-one, one-to-many, many-to-one or many-to-many depending on the
cardinality of the data. Relationships help to organize and query data efficiently and accurately in a
database.

60




Discussion Platform Maruf Bepary

**comment id**, comment content,

**tag id**, tag name,

*user id*, username, user_name,

*community id*, community name, community description,
*post_id*, post content, post edit status, post creation

)

Second Normal Form (2NF)

Helps achieve Consistency by organising the data such that each non-key attribute is dependent on
the entire primary key, rather than just a part of it [87]. This helps to eliminate redundancy and
ensure that each piece of data is stored in a single location, making it easier to maintain the
consistency of the data over time. In other words, 2NF helps to ensure that a database satisfies the
consistency property of ACID by reducing the chances of inconsistencies and anomalies that may
arise from duplicate data [87].

Requirement: Every non-primary-key attribute is fully functionally dependent on the primary key.

R(
**comment id**, comment content,
**tag id**, tag name,
*user id*, username, user name,
*community id*, community name, community description,
*post _id*, post content, post edit status, post creation
)
Closures
Original

(comment id, tag id) = {
**comment id**, comment content,
**tag id**, tag name,
*user id*, username, user name,
*community id*, community name, community description,
*post _id*, post content, post edit status, post creation
}
Partial Functional Dependency
(comment id) = {
**comment id**, comment content,
*user id*, username, user_name,
*community id*, community name, community description,
*post _id*, post content, post edit status, post creation
}
(tag_id) = {
**tag id**, tag name,

}

comment id, tag id

comment id - comment content, user id, username, user name, community id,
community name, community description, post_id, post content,
post _edit status, post creation

tag id - tag name

Relations

R(comment id, tag id)
R1 (
**comment id**, comment content,
*user id*, username, user_name,
*community id*, community name, community description,
*post id*, post content, post edit status, post creation

61




Discussion Platform Maruf Bepary

)
R2 (**tag id**, tag name)

Third Normal Form (3NF)

Helps achieve the Consistency property by reducing data redundancy and eliminating
inconsistencies in the data [88]. By removing redundant data and ensuring that data is stored only
once, 3NF helps prevent data anomalies and ensures that data is always consistent. In other words,
3NF ensures that the data in a database is accurate, consistent, and in a well-structured format,
which helps to maintain the overall reliability and integrity of the data in the database [88].

Requirement: There is no transitive dependency for non-prime attribute

R(comment id, tag id)
R1(
**comment id**, comment content,
*user id*, username, user_name,
*community id*, community name, community description,
*post _id*, post content, post edit status, post creation
)
R2 (**tag id**, tag name)

Closures

(comment id) = {
**comment id**, comment content,
*user id*, username, user_name,
*community id*, community name, community description,
*post id*, post content, post edit status, post creation
}
(post_id) = {
**post id**, post content, post edit status, post creation,
*community id*, community name, community description
}
(community id) = {
**community id**, community name, community description,
*user id*, username, user_name
}
(user id) = {**user id**, username, user name}
comment id - post id - post content, post edit status, post creation
post id - community id - community name, community description
community id - user id — username, user name

Relations

R(**comment id**, comment content, *post id*)

R1 (**post id**, post content, post _edit status, post creation,
*community id*)

R3 (**community id**, community name, community description, *user id*)

R4 (**user id**, username, user name)

Final Relations

One to Many / Many to One

Users (**user id**, username, user name)

Communities (**community id**, community name, community description,
*user id* (Creator))

Posts (**post_id**, post content, post _edit status, post creation,
*community id*, *user id* (Creator))

Comments (**comment id**, comment content, *user id* (Creator),

*comment id* (Reply), *post id* (Reply))

62




Discussion Platform Maruf Bepary

Tags (**tag id**, tag name)

Many to Many

Subscribe Communities Users (**community id**, **user id**)
Likes Posts Users (**post id**, **user id*¥*)

Likes Comments Users (comment id, user id)

Filter Tags Posts (**post id**, **tag id**)

4.2.2 Non-Relational Database (NoSQL)

As mentioned before, the final system uses a non-relational database provided by Firebase called
Firestore. The rationale for using Firestore was discussed in Non-Relational Database using on
Final System. Firestore is a document database, meaning that it is structured similar to a file system
[51]. A collection in Firestore is similar to a folder and can store many related documents, for
example, a collection of "users" can store many user objects [51]. These objects, collected into
collections, are called "documents" [51]. Documents can also contain sub-collections, which were
used in this project to capture certain types of relations when metadata was involved [51]. Since
Firestore is a non-relational database, there was no normalization involved in the design [51].

User object in the “users” collection

The user entity in the system represents the users who interact with the website. Although there are
other fields that exist for the user, they are not relevant for the purpose of this description. The user
performs various actions within the system, such as creating and deleting posts and creating and
deleting comments. This entity is the central piece for the user's interaction with the website.

uid: identifies the user

email: email for the user

disabled: whether the account is banned

displayName: name of the user

emailVerified: whether the email was verified

passwordHash: hashed password of the user

providerData: metadata provided if the user signed up using 3rd party
provider

Communities object in the "‘communities’ collection

The communities entity in the system represents the communities that a user can interact with.
Each community has a unique name, which serves as its identifier. Each user can subscribe to
multiple communities, and communities can have many subscribers. The ‘numberOfMembers
field captures the number of subscribers in a community. In a relational database, this would be a
derived field, calculated by counting the number of users that are subscribed, but in this case, it is a
stored field. This means that the data must be manually updated each time a user subscribes or
unsubscribes, but it also means that there is no need for extra computation if only the number of
members in a community is needed. The users who have subscribed to a community are stored in
the "users" document. The ‘privacyType" field stores the type of community, with options for
"public" (where any user can view and post), "restricted" (where any user can view posts but only
subscribers can post), and "private" (where only subscribers can view and post).

createdAt: when the community was created

creatorId: user who created the community

imageURL: URL (from Firabase Storage) for the community logo
numberOfMembers: number of users subscribed to the community
privacyType: whether the community is ‘public’, ‘private’ or ‘restricted’

Posts object in the ‘posts’ collection

The posts entity in the system represents the content created by users within the communities.
Users can create posts in communities, and other users can view them. Each post belongs to a

63




Discussion Platform Maruf Bepary

single community and is created by one user. Posts can be commented on, resulting in many
comments for a single post. The number of comments for a post is stored directly for the same
reason as storing the number of subscribers in a community. The comments themselves are stored
in the "comments" collection.

A post has a title, the body storing the contents of the post, and an optional image, which is stored
in Firebase Storage. Posts can also be voted on by other users, with a vote status captured by the
field "voteStatus." The overall vote status is stored for the same reason as storing the number of
subscribers in a community. When a post is created, its vote status is initialized to 0, as no user has
liked or disliked the post. When a user votes on a post, the vote status is incremented or
decremented depending on whether the user liked or disliked the post, respectively. The users who
voted on a post are stored in a sub-collection in the "users" document.

uid: uniquely identifies a post

title: stores the title of the post

body: stores the extra description/content of the post

imageURL: optional image that can be posted

creatorId: stores the unique identifier of the user who created the post
creatorUsername: stores the username of creator of the post for quick
access

createTime: when the post was created

voteStatus: overall vote of the post

Comments object in the ‘comments’ collection

The comments entity in the system represents the responses to the posts created by users. Users can
comment on posts, which can be viewed by other users. Each comment belongs to a single post,
and a post can have many comments on it. This entity captures the conversation and discussions
related to the posts within the communities.

id: unique identifier of the post

postId: identifier to the post the comment belongs to

postTitle: title of the post the comment belongs to for quick access
creatorId: identifier of the user who created the comment
creatorDisplayText: username of the user who created the comment for
quick access

text: comment text itself

createdAt: time when the comment was created

“communitySnippets’ sub-collection in the “users’ collection

The relation between a user and a community is represented in the database. As mentioned earlier,
a user can subscribe to multiple communities, and a community can have many users subscribed to
it. The user objects are stored in the "users" collection, and these objects contain a
"communitySnippet" collection that represents the relations between the user and the communities.
The  community  snippet  objects are stored in the  following  format:
"user/userld/communitySnippet/communitySnippetObject”. This means that a user can have many
community snippet objects, representing multiple relationships.

There is some data repetition in this structure for data that is frequently used, such as the relation
between a user and a community. If a user is the creator of a community, they are considered the
admin. This information is stored in the community snippet object, allowing for quick access to the
information without the need for complex computations or queries.

communityId: identifier of the community the user is subscribed to
imageURL: logo of the community for gquick access
isAdmin: specifying if the user is the admin of this community

‘postVotes™ sub-collection in the “users” collection

64




Discussion Platform Maruf Bepary

As mentioned earlier, a user can vote on posts in the system. This means that multiple users can
vote on multiple posts. The information about a user's votes is stored in a sub-collection within the
"users" object, representing the list of all votes the user has made for posts. The overall post vote
status is stored in the post object. Whether the post was liked is stored in "postVotes," and the value
of "voteValue" is used to calculate the overall value of the post votes. This structure allows for easy
tracking of the votes made by each user and the overall vote status of each post.

Id: unique identifier for the post

communityId: community to which the post being liked belongs to
postId: identifier to post being voted on

voteValue: whether the post was liked (+1) or disliked (-1)

65




Discussion Platform Maruf Bepary

4.3 Features of the End System

All the features and todos have been kept track with using GitLab’s built-in features. Boards was
used to keep track of the planned features that need to be implemented. Issues was used to keep
track of new feature requests or bugs.

Many of the planned features have been implemented. Features have been implemented in order of
priority specified in the User Stories section. Tags have been created for keeping track of the fully
functional features and sub-features.

4.3.1 Authentication and Account Management

The system has several key user authentication and account management features designed to
ensure that users have a seamless and secure experience:

1. Users can sign up using email and password

2. Users can sign up using third party authentication providers such as Google and
GitHub

3. Users can in using email and password

4. Users can log out

5. Users can reset their password

6. Users can modify their profiles (profile image and username)

Sign Up Screen / Modal

Already a Clown? Log In

Users can sign up using their email address and a secure password, providing them with access to
all of the application's features and functionality.

To make the sign-up process even more convenient, users can also sign up using third-party
authentication providers such as Google and GitHub. This approach saves users time and effort, as
they can quickly log in using their existing credentials and start using the application right away.

Log In Screen / Modal

66




Discussion Platform

Maruf Bepary

Login

G Google

) aitHub

Email

Password

Forgot your password? Reset Password

Want to join the circus? Sign Up

For users who have already created an account, they can easily log in using their email and

password.

Profile Management Screen/Modal

Maruf Bepary

Profile X

) TS

Profile X
e
Maruf Bepary
[ Delete Image ] Email: bepary71@gmail.com
User Name: Maruf Bepary
User Name
( Cancel
(e )

Once logged in, they can access all of their account information and settings, including the ability
to modify their profile information such as their profile image and username.

Logging Out

@ + &Mnmrupw ~

I ; ...

{8 C -] LogOut

rufCircus

ers Created

1

To ensure the security of user data, users can also log out of their account at any time.

67




Discussion Platform Maruf Bepary

Resetting Password

Reset Password

[ )
LA

Reset your password

Enter the email associated with your account
and we will send you a reset link

Reset Password

LOGIN - SIGN UP

In addition, if users forget their password, they can reset it easily using the password reset
functionality, which sends them an email with instructions on how to reset their password.

4.3.2 Community

The system has several key community management features designed to promote engagement and
collaboration among users.

Users can create communities (different types)

Users can subscribe and unsubscribe to and from a community
Admins can change the community logo

Admins can change community visibility

Users can view all public and restricted communities

M

Creating Community

Create Community

Community names cannot be changed

[

25 Characters remaining

Community Type
& Public Everyone can view and post

© Restricted everyone can view but only subscribers can post

@ Private only subscribers can view and post

) RS

Users can create communities of different types, allowing them to connect with others who share

68




Discussion Platform Maruf Bepary

similar interests, goals, or backgrounds.

Subscribing & Unsubscribing

s . LS .
« Circus @~ ° - ® +&- * Cireus @ -~ o ® + @-
i2 View All Communities
© rest = vemmcommnn == QO e = i
PrvieseD
PRviEGED
@ Fedora
S = ¢
B ¢ About Test ® marufcircus o
MarufCircus .
. i oA Subscribers  Created
. subscribers  Created © @ rest pynken e 3 Mar 07, 2023
© € rest Bynkein 3 Mar 07, 2023 1 Testpost ¥ Clowns
Test post Looking good! @ redora

Create Post
@ Fedora < share

@ marufcircus

® Looking good! -

® MarufCircus
« Share

%3 Test

To participate in a community, users can subscribe or unsubscribe to and from it. This approach
provides users with control over their community involvement, allowing them to focus on
communities that are most relevant to their needs.

Community Settings

Community Settings

Fedora

Change Image \ Delete Image

Community Type

Currently publ

Select option

Community administrators have additional functionality, such as the ability to change the
community logo. This feature allows administrators to customize the community's appearance,
making it more visually appealing and recognizable to users.

Administrators can also change community visibility, allowing them to control who can see and
access the community. This feature is particularly useful for communities that have specific
membership criteria or that deal with sensitive or confidential information.

69



Discussion Platform

Maruf Bepary

“ Circus

Test

Clowns

® © ® ©

MarufCircus

Hahahaah

ComputationalFinance

@ Fedora

.
a3
L& J

-
Unsubscribe |

a4 [ Unsubscribe
= s

g Maruf Bepary ~

® +

L)
#,® Home

Home page personalized based on your subscribed communities.

Create Post

22 ( Unsubscribe W
V)

W

[ Create Community

To make it easy for users to discover and join communities, the web application provides a
comprehensive view of all public and restricted communities. Users can browse and search for
communities based on various criteria, such as topic, size, and membership type.

4.3.3 Posts

The system has several key features designed to make it easy for users to create and view posts
within communities:

AN

User can create a post in a specific community w
User can view all posts from a community

ith an optional image

User can view posts from subscribed communities

User can delete a post they have created
User can vote on a post
User can share a post

Creating New Posts

% @~ Q search + & - % @~ Q search + & -
Create Post Create Post
‘ E Post ] Images E Post ‘ @ Images

l)r < Back to Test ‘

This is a new post

]/ < Back to Test ‘

This is the description for the post

Upload Content

70




Discussion Platform Maruf Bepary

Users can create a new post in a specific community, providing them with a targeted audience for
their content. They can also add an optional image to their post to make it more visually appealing
and engaging.

Viewing Posts from Community Page

o Cil’CuS @ Test S ® + ? Maruf Bepary

o Test |: Unsubscribe /\

About Test 484

) Subscribers Created
@® @ Test By bepary71 a few seconds ago 4 Mar 07, 2023
0 Thisis a new post
@ This is the description for the post Create Post

< Share ] save O Delete

o @ Test By nkeirukaw 15 days ago
Test post

Looking good! -Keiru

< Share ] save

To stay up-to-date with the latest posts in a community, users can view all posts from a specific
community. This feature provides users with an overview of the latest content in the community,
enabling them to engage with others and stay informed on relevant topics.

Viewing Posts from Subscribed Communities in the Home Page

s
et Circus A Home k4 ® + f Maruf Bepary
(B
S
‘ @ Test By bepary71 3 minutes ago 1 . MarufCircus " Unsubscribe
0 Thisis a new post
This is the description for the post 2 @ Test (_ Unsubscribe
% Share save O Delete
s € vomamaan -

o @ Fedora By Maruf Bepary 25 days ago

1 Desktop 4 @ Clowns [ subscrive ]
5 @ ComputationalFinance

L}
®,8 Home

Home page personalized based on your subscribed communities

Create Post

| Create Community

BECHEHE

Users can also view posts from subscribed communities, ensuring that they never miss an

71




Discussion Platform Maruf Bepary

important post from a community they are interested in. This feature helps users stay connected to
the communities they care about, without having to manually check each community for new
content.

Deleting Posts

% Circus & Home . @ + @ versersy

BECYEEL @

® Marufcircus By bepary71 5 hours ag
Post 2
This is the second post

© @ Test Bynkeirukaw 15days ag
1 Test post
Looking good! -Keiru

% Circus A Home ~ ® + | T ——

© @ redora ByMarufBepary 25 days ago
3 File manager
~' File manager with tabs and a nice and consistent design

BEPHYEE®

> Share

©  Test Bynke days ag
Test post
Looking good! -Keiru
@ Post Deleted x
ha save Your post has been deleted

Users can delete posts that they have created. This feature is particularly useful for managing
content that is no longer relevant or accurate, ensuring that communities stay up-to-date and
relevant. Other users cannot delete a post they have no created.

Voting (Liking & Disliking)

72




Discussion Platform Maruf Bepary

) .
o Circus @ redora v @ + @ vosepory
© @ Fedora ByMarufBepary 25 days ago About Fedora
2 Desktop
~ Subscribers Created
0 Feb 25, 2023

Community Settings ‘

Users can also vote on posts, indicating their approval or disapproval of the content. This feature
provides valuable feedback to post creators, helping them to understand what type of content
resonates with their audience and what does not.

Sharing Posts

% circus @) Fedora v ® + ? Maruf Bepary

© @ Fedora ByMaruf Bepary 25 days ago About Fedora
2 Desktop

Subscribers Created
0 Feb 25, 2023

Create Post

[ Community Settings

BECYEE

© Link Copled 2

Link to the post has been saved to your clipboard

Users can share posts (by sending links to posts), enabling them to share valuable content with
others and promote meaningful engagement within communities. This feature provides users with
an easy way to share relevant content with their network, contributing to a vibrant and engaged
community.

73




Discussion Platform Maruf Bepary

4.3.4 Comments

The web application has several key features designed to make it easy for users to engage with
others by creating and viewing comments:

1. User can create a comment to reply to a post
2. User can view comments in a post
3. User can delete a comment they created

Creating Comments

L% Circus @ Test v @ + & worurcepay v
i @ Foste ynleliskan s cays 65
1 Test post
® ! ] "
' Looking good! -Keiru Subscribers Created
4 Mar 07, 2023
< Share [ save

Create Post

Comment as bapary71

Thanks for the feedback

nkeirukaw
Testing creating a comment.
rs
** Circus D Test v ® + ' Maruf Bepary v
© @ Test Byrkerukaw 15 days ago _
1 Test post
© Looking good! -Keiru Subscribers Created
4 Mar 07,2023
< Share Save
Comment as bepary71

bepary71
Thanks for the feedback
dit Delete

nkeirukaw

Testing creating a comment.

Users can create a new comment in response to a post, enabling them to share their thoughts and
feedback with others.

Viewing Comments

74




Discussion Platform

Maruf Bepary

o Circus @ Test -

© & Test Bynkeirukaw 15 days ago
1  Testpost
® Looking good! -Keiru

« Share [1 save

Comment as bepary71

bepary?1
Test comment

Edit Delete
bepary71
Thanks for the feedback

Edit Delete

Testing creating a comment.

® Comment Created

® + ! Maruf Bepary ~

About Test

Subscribers Created
a Mar 07, 2023

Create Post

x

Your comment has been created

To view comments associated with a post, users can access the post and see all of the comments
that have been created in response. This feature provides users with a comprehensive view of the
conversation around the post, allowing them to engage with others and stay informed on relevant

topics.

Deleting Comments

% Circus @ rest v

© @ Test Bynkeirukaw 15 days ago
1 Testpost
Looking good! -Keiru

< Share Save

Comment as bepary71

bepary71
Test comment

Edit Delete

bepary71
Thanks for the feedback

Edit Delete

nkeirukaw

Testing creating a comment

® + ' Maruf Bepary v

Subscribers Created
4 Mar 07, 2023

Create Post

75




Discussion Platform Maruf Bepary

o Cimus D Test v ® + , Maruf Bepary v
° @ Test Bynieruau s doys s
1 Test post
Y Looking good! -Keiru Subscribers Created

4 Mar 07, 2023
Share save

Comment as bepary71

bepary71
Thanks for the feedback

nkeirukaw

Testing creating a comment

@ Comment Deleted
Your comment has been deleted

Users can also delete comments that they have created. This feature is particularly useful for
managing content that is no longer relevant or accurate, ensuring that comments stay up-to-date
and relevant. Other users cannot delete comments they have not created.

5. General:

The system has several general features to make the site user friendly and accessible

1. Logged in users can view posts from various communities they are subscribed to in
the home feed

2. Logged out users can view posts from all communities in order of likes

3. System UI is responsive hence it can be used on smartphones, tablets or computers

Home Feed for Logged in Users

76




Discussion Platform Maruf Bepary

)
*" Circus & tome - ® + @ werstvepary -
al S
Top Communities
@) Test By bepary71 3 minutes ago 1 ’ MarufCircus Unsubscribe
0 This is a new post
This is the description for the post 2 @ Test .
Share Save O Delete
3 @D Hahahaah =D
© ) Fedora ByMaruf Bepary 25 days ago
| Desktop 4 ;:) Clowns m
o s @D compustionarmanc:  (IEEEEED

)
$,& Home

Home page personalized based on your subscribed communities.

Create Community

8" EE

Users can also view posts from subscribed communities in their home feed, ensuring that they
never miss an important post from a community they are interested in. This feature helps users stay
connected to the communities they care about, without having to manually check each community
for new content.

Home Feed for Users Who Are Not Logged In

% Circus

Tof Corfimunities

f) Fedora ByMaruf Bepary 25 days ago 1 " . S—— m

3 File manager
File manager with tabs and a nice and consistent design 2 @ Test m
ST - s
s €D aoms s
s €D compuatonarmance (RN

rs
®,® Home

Home page personalized based on your subscribed communities

EEELLE [ v B

Shar Sxii Create Community |

#) Fedora By Maruf Bepary 25 days ago

2 Microsoft Edge on Store

For users who are not logged in, they can still view posts from all communities in order of likes.
This feature enables non-logged-in users to browse and search through the most popular posts
across all communities, providing them with valuable insights and information even if they are not
subscribed to any specific communities.

77




Discussion Platform Maruf Bepary

Responsive Interface

=
& Circus wen ) (EETTED o3 Q search .

© redora By Marurepory 25 caysogo 1 @ verviciras >
3 File manager
Y File manager with tabs and a nice and consistent design 2 @D Test =
(@) @) Fedora ByMaruf Bepary 25 days ago
3 €D vanahaan (@] 3 File manager
(©) . . .
4 @D clowns [ suoscrme ~  File manager with tabs and a nice and
consistent design
. s €D compuaonarmance  (EEEEEED
-
-
- e
-
= ) A
- s
™ 9,0 Home

Home page personalized based on your subscribed communities.

( Create Community

< Share Save

@ Fedora By Maruf Bepary 25 days ago
2 Microsoft Edge on Store
e ®

) @) Fedora By Maruf Bepary 25 days ago

2 Microsoft Edge on Store
©

< Share Save

(®) @ MarufCircus By ahmedtalal962 6 days ago
2 Ahmed here

To ensure that the user interface is accessible to all users, the system UI is responsive and can be
used on smartphones, tablets, or computers. This feature ensures that users can access and use the
application regardless of the device they are using, enhancing the overall user experience and
accessibility.

78




Discussion Platform Maruf Bepary

4.4 User Interface

The website has been designed using usability principles while making it visually pleasing.

4.4.1 Background Blur

Background blur has been used for modals and popup windows in this application for many
different reasons:

e Improved focus: Blur backgrounds help to draw the user's attention to the content within
the modal or window by creating a visual separation from the main interface. This can
make it easier for users to focus on the task at hand, and can also reduce distractions from
other elements on the screen [94].

e Enhanced readability: Blur backgrounds can also help to improve the readability of text
and other content within the modal or window. This is because the blurred background acts
as a subtle backdrop that reduces the contrast between the text and the background, making
it easier on the eyes and reducing eye strain [94].

e Increased perceived depth: Blur backgrounds can add a sense of depth to the interface,
making it feel more three-dimensional and immersive. This can help to create a more
engaging and visually appealing experience for users.

e Improved aesthetics: Blur backgrounds can also contribute to the overall aesthetic appeal
of the interface, making it look more polished and professional. This can help to increase
user trust and confidence in the application, and can also make the interface more
enjoyable to use [94].

Login

G Google o GitHub

Forgot your password? Reset Password

Want to join the circus? Sign Up

4.4.2 Typography

Typography is also a technique that was used for making the system more accessible and visually
pleasing:

e Bold headings: By using bold headings, the designer is emphasizing the most important
information on the page and making it easy for users to quickly identify the main sections
of content. This can help to create a visual hierarchy and make the interface more readable
and accessible [95].

e Qray for less important information: The use of gray for less important information helps
to de-emphasize this content and create a clear distinction between what is most important
and what is secondary. This can make it easier for users to quickly understand the structure
of the page and find the information they are looking for [95].

79




Discussion Platform Maruf Bepary

e Bold links with red accents: By making links bold and using a red accent color, the
designer is making them stand out and easy to find. This can help to improve the
discoverability of links and encourage users to interact with them. The use of red also helps
to reinforce the color theme of the application and create a consistent visual style [95].

O] ) Fedora By Maruf Bepary a month ago

3 File manager

File manager with tabs and a nice and consistent design

0 @ D & & % ©ee% Bioox &

k-4
x
k-4
k-4
*
x
*
*
k-4

BEPYEE®

<5 Share L. Save

4.4.3 Responsive Ul

Responsiveness is a technique that was used in this project to adapt the interface to different form
factors, such as computers, phones, and tablets [96]. The goal of responsiveness is to create a
seamless user experience regardless of the device being used, and to ensure that the content and
functionality of the website are accessible and usable on a variety of devices and screen sizes [96].
In this project, Chakra UI was used as discussed in the Front-End Technologies section. This is
discussed in more detail in the Features of the End System section.

In this project, flexible grids systems were utilised to structure the content on the page. The grid
adjusts dynamically based on the size of the screen, ensuring that the content is rearranged in the
most optimal way for the available space [96].

Media queries were also utilised to apply different styles to the website based on the characteristics
of the device being used [96]. For instance, when changing the font size and hiding certain
elements on smaller screens to provide a better user experience [96].

Finally, for touch devices, touch-friendly interactions like tap targets, swipe gestures, and pinch-to-

zoom were designed [96]. These interactions provide an intuitive and accessible experience for
users, making the website easy and enjoyable to use on all devices [96].

80




Discussion Platform Maruf Bepary

4.5 Future Enhancements

There are some features that are yet to be implemented which hold lower priorities, these are
mostly priority 3 (least important) according to the user stories. Most of these were not captured by
user stories.

These functionalities can be assigned a difficulty rate giving a rough estimation of how difficult it
would be to implement such features:

1. Low Difficultly
2. Medium Difficultly
3. High Difficulty

below is a list of features, functionalities and enhancements that can be added for the future:

Only allow verified users to create create content (post or comment) (2)
e Add functionality for users to manage communities such as add and change descriptions to
clarify what the community is about (1)
e Add functionality for users to reply to other comments to have deeper and more organised
discussions (3)
e Add functionality for users to edit posts and comments if they want to change any mistakes
6]
o May lead to abuse if the content is changed too much hence it is not certainty
o Will lead to less transparency in the community
e Add functionality to save and add tags to post for better organisation and reference of
content (2)
e Add funtionality to manage user profile to modify usernames, password or change profile
picture (2)
e Add functionality for users to moderate content if there is inappropriate or offensive
content (3)
o Users report of on a post or comment and at a certain point, it will automatically be
deleted
e Add a search functionality to quickly search for communities and posts in a community (3)
e Adding notifications if other users reply to a post created by a user or for other updates (3)

81



Discussion Platform Maruf Bepary

4.6 Running the Site

The site has been deployed on Vercel and it is fully operational:

https://circus-discussion.vercel.app/

82


https://circus-discussion.vercel.app/

Discussion Platform Maruf Bepary

Chapter 5: Assessment & Evaluation

5.1 Profession Considerations for this Project

One of the main professional considerations for this project was password management. The
developer wanted to ensure that our users could create and access their accounts securely and
conveniently. Proper password security measures were handles by Firebase who already tested
their system and ensured that it meets the technical and legal requirements. Features such as
password strength were implemented forcing the user to create appropriately strong passwords.

5.1.1 Security & Privacy

Good password management is essential for ensuring the security of a website and the personal
information of its users [89]. When a website stores passwords in an insecure manner, such as
saving them in plain text or using a weak encryption method, it leaves them vulnerable to attacks
like hacking or data breaches [89].

If a website fails to manage passwords properly, it can result in a serious security breach [89].
Hackers can gain access to sensitive information like user names, passwords, email addresses, and
other personal details, which can be used for identity theft, fraud, or phishing attacks. This can
harm the reputation of the website and cause a loss of trust among its users [89].

When developing a web application, the security of passwords should be a top priority. This means
using secure password storage methods, such as hashing and salting, and implementing robust
authentication and authorization systems. Additionally, developers should also consider using tools
like password managers and two-factor authentication to further strengthen the security of the
website [89].

An example of such a failure is the 2013 data breach at Yahoo, where the company stored user
passwords using an outdated encryption method that was easily crackable [90]. This resulted in the
personal information of all three billion of its user accounts being compromised, leading to
numerous lawsuits, a decline in its reputation, and financial losses [90].

Therefore, it is important to prioritize password security when developing a web application by
using secure password storage methods, implementing robust authentication and authorization
systems, and considering tools like password managers and two-factor authentication to strengthen
the security of the website. This helps to protect user information and avoid the serious
consequences of a security breach.

5.1.2 Legal

Good password management is also important from a legal perspective, as failing to properly
manage user passwords can result in serious legal consequences [91].

In many countries, there are laws and regulations, such as the General Data Protection Regulation
(GDPR) in the European Union and the California Consumer Privacy Act (CCPA) in the United
States, that require organizations to protect the personal information of their users [91][92]. If a
website fails to properly manage user passwords and a data breach occurs, the organization may be
held legally responsible for the loss of sensitive information and may face fines, lawsuits, and
negative publicity [91][92].

The legal consequences of a security breach can also extend to the development process of |a web
application [91][92]. For example, if a developer is building a web application and fails to
implement proper security measures, such as using secure password storage methods or

83



Discussion Platform Maruf Bepary

implementing robust authentication and authorization systems, they may be held liable for any
security breaches that occur as a result [91][92].

The 2013 data breach at Yahoo had significant legal consequences in addition to its impact on the
company's reputation and finances. Due to the nature and scale of the breach, Yahoo faced multiple
lawsuits from affected users and state attorneys general, who accused the company of failing to
properly protect user information. The company was also required to pay substantial fines as part of
settlement agreements [90][92]. In addition, the data breach at Yahoo was a clear violation of
privacy and data protection laws, such as the General Data Protection Regulation (GDPR) in the
European Union and the California Consumer Privacy Act (CCPA) in the United States. These
laws require organizations to protect the personal information of their users and impose significant
fines and penalties for data breaches [90][92].

Therefore, it was important to be aware of the legal implications of poor password management
and to prioritize security measures when building a web application. This includes following
industry best practices and implementing the necessary security measures to protect user
information and avoid legal consequences.

5.1.3 Ethical

Good password management is also important from an ethical perspective, as failing to properly
manage user passwords can have significant ethical consequences.

In an ethical context, organizations have a responsibility to protect the personal information of their
users and ensure that their data is handled in a responsible and trustworthy manner [92]. If a
website fails to properly manage user passwords and a data breach occurs, this can result in the loss
of sensitive information and a breach of trust between the organization and its users [92].

The ethical consequences of poor password management can also extend to the development
process of a web application [92]. If a developer is building a web application and fails to
implement proper security measures, such as using secure password storage methods or
implementing robust authentication and authorization systems, they may be contributing to the loss
of sensitive information and violating the trust of users [92].

Therefore, it was important to prioritize ethical considerations when building the system and to
take the necessary steps to protect user information and maintain the trust of their users. This
includes following industry best practices and implementing the necessary security measures to
ensure the confidentiality and privacy of user data.

5.1.4 Improvements for the Current System

There are several security improvements that can be made to enhance the security of the system:

e FEmail Verification: Adding email verification to your website can help prevent the creation
of fake accounts and reduce the risk of spam and malicious activity. This can be
accomplished by requiring new users to confirm their email address before they can access
their account.

e Two-Factor Authentication (2FA): Implementing 2FA can add an extra layer of security to
user accounts by requiring users to provide a second factor of authentication, such as a
code sent to their phone, in addition to their password. This can help prevent unauthorized
access to user accounts even if their password is compromised [93].

Implementing these features can help ensure the security and stability of the website and provide a

safer environment for your users. However, it is important to continuously monitor and update the
system’s security measures to stay ahead of evolving security threats.

84



Discussion Platform Maruf Bepary

It's worth noting that as an open source project, users are ultimately responsible for their own
security and should take steps to protect their own personal information and accounts..

85



Discussion Platform Maruf Bepary

5.2 Diary

5.2.1 August 2022

In August 2022, I took the time to learn about Docker and its use for containerization. This
technology has become increasingly important in the development world, as it allows for
applications to be packaged and run consistently across different environments. I was able to
understand how containers can be used to isolate and manage dependencies, making it easier to
deploy and maintain applications.

Additionally, I learned about CI/CD pipelines and how they can be used to automate the build,
testing, and deployment of applications. This technology is becoming more and more popular, as it
can help to speed up the development process and reduce errors. I was able to understand the
different stages of a CI/CD pipeline and how to set one up for a project.

Lastly, I studied APIs and routing. I learned about how APIs can be used to exchange data between
different systems, and how routing can be used to control the flow of requests in an application.
This knowledge will be useful as I continue to develop and maintain websites, as APIs and routing
are becoming more common in web development.

5.2.2 September 2022

In September 2022, I had an idea for a new project and decided to pursue it. I spent some time
researching and planning, making sure that I had a clear understanding of what I wanted to achieve.

On the 17th of September, I started learning Flask for the back end of the project. Flask is a popular
Python framework for web development, and I was eager to learn more about it. I was impressed
by its simplicity and flexibility, and I felt confident that it would be the right choice for my project.

In addition to learning Flask, I also started learning some basic React for the front end. React is a
JavaScript library for building user interfaces, and it has become one of the most popular choices
for front end development. I was excited to learn about its component-based architecture and how it
can be used to create dynamic and interactive user experiences.

5.2.3 October 2022

In October 2022, 1 set up a Poetry project locally for experimentation. Poetry is a package manager
for Python that makes it easier to manage dependencies and packages for a project. I found it to be
a useful tool for organizing and maintaining my project, and I was able to start experimenting with
different ideas and technologies.

On the 4th of October, I started working on the project plan. I wanted to make sure that I had a
clear roadmap for the project and that I knew what steps I needed to take to reach my goals. I spent
some time researching and brainstorming, and [ was able to come up with a comprehensive plan.

Finally, on the 7th of October, I submitted the project plan. I was pleased with the amount of work
I had done so far, and I felt confident that I was on the right track. I was excited to move forward
with the project and start bringing my ideas to life.

5.2.4 November 2022

In November 2022, I continued my learning journey by focusing on GitLab CI. I wanted to learn
how to implement CI/CD pipelines with Docker containers, and GitLab CI seemed like the perfect
tool for the job. I was able to understand how to set up pipelines and automate the deployment of
my application.

86



Discussion Platform Maruf Bepary

I also realized that I needed to learn data mocking for testing APIs. This is an important technique
in software development that allows developers to simulate the behaviour of an API without
actually calling the real API. I understood that this would be essential for testing the APIs that I
was developing for my project. Mocking using PyTest was relatively simple, especially compared
to Jest in JavaScript.

On the 29th of November, I finished experimenting with the Material React library for the front
end. I was pleased with what I had learned, but I was also exploring other options as it was not
giving the flexability I needed. I was interested in Flutter Web and Svelte, two relatively new
technologies that are gaining popularity in the web development community. I wanted to learn
more about them and see if they could be a good fit for my project.

5.2.5 December 2022

In December 2022, I started a new project using Next.JS, TypeScript, Firebase v9, and Recoil3. 1
wanted to use Next.JS because it provides a more structured development experience and offers
features that are not available with regular React. I also wanted to use TypeScript for its static type
checking capabilities, which can help catch errors early in the development process. The rational
behind choosing these tools is discussed in Technologies (Web Frameworks) section.

Lastly, I decided to use Recoil for state management. I learned that Recoil provides more advanced
state management than React, which is required for this complex application. I was able to
understand how Recoil works and how it can be used to manage state in a scalable and efficient
way. This was extremely useful to make the site more responsive and it was very simple to
understand.

Overall, I was excited to start this new project and put my skills to the test. I was confident that the
combination of Next.JS, TypeScript, Firebase v9, and Recoil would help me to create a high-
quality, robust application.

5.2.6 January 2023

In January 2023, I made significant progress on my project. On the 12th, I successfully
implemented authentication via Firebase, including log in and sign up, as well as third-party
authentication providers. I was pleased with my progress and felt confident in my ability to add
more features to the application. The documentation provided by Firebase and react-firebase-hooks
was very simple to understand and using Chakra Ul to build the frontend was a breeze.

However, on the 13th, I encountered a major setback. I attempted to implement password reset, but
I ran into a bug that caused the whole project to fail. The bug was too difficult to fix, and I was
forced to start over from scratch.

Despite this setback, I was determined to keep going. On the 30th of January, I started
reimplementing the whole project from scratch. This time, I was able to fully implement
authentication, including sign up with email and password, log in with email and password, and the
ability to continue with Google and GitHub. I also successfully implemented password reset, which
had been a challenge for me previously.

I was proud of my progress and felt that I had learned a lot from my experiences. I was eager to
continue building and improving the application, and I was confident that I would be able to
overcome any future challenges that came my way.

5.2.7 February 2023

In the month of January 2023, a lot of progress was made on the project. On the 1st, I implemented
the functionality to create a community via a modal. The modal allowed the user to select which
type of community should be created (public, private, or restricted) and added checks for the
character limit and length of a community name. I also prevented special characters in community

87



Discussion Platform Maruf Bepary

names, as they could be used to create weird communities. Community names are unique and are
used as keys. Creating communities was very simple both in the frontend and backend.

On the 5th, I added a project wiki with instructions on how to set up and run the project. This can
be used by other people to configure the project and for my future reference. 1 also added issue
templates for bugs and features, which provides a consistent structure for issues and makes it easier
to track them. I also added a license. I implemented the functionality to subscribe and unsubscribe
to and from communities.

I started adding documentation for community functionality on the 6th and researched about testing
techniques for the current stack (Next.JS + Firebase) on the 8th. On the 14th, I added proper
password verification which was simple but it required me learning regex, using a library would
have been simpler. On the 15th, I finished the implementation and documentation of community
functionality. Writing the documentation was tedious but an important step that had to be done.

On the 16th, I created a post page where users could create posts for a specific community. I also
allowed uploading and removing images, which is required for creating posts with images. I added
functionality to create posts in the backend and display the posts for a community in the main
community page. | also added functionality to delete a post if the user is the creator of the post.
This functionality was simple for the most part, but it required a lot of work and it would have been
impossible to parallelise.

On the 18th, I created an "about" component for the community page, which displays information
about the community. I made the navbar always visible while scrolling and refactored the upload
and delete image into its own hook as it is used by multiple components. I also added functionality
for community admins in the "about" component. This was also simple to implement as only some
simple data from Firebase had to be fetched. Adding community description would have also been
a nice feature but this would have required me to allow the user to insert this description, it would
have also required the community state to be updated which could result in complications (since it
is a foundational part of the codebase).

I fixed a bug with the navbar on the 19th and implemented the functionality to vote on posts on the
20th, this was the most difficult part of the project. This is because implementing voting
functionality is a highly relational operation which as discussed in Non-Relational Database using
on Final System is not simple to do with Firestore. I was required to store the total number of likes
in the post document, store every post the user has voted to in the users, whether they liked or
disliked to post and use this to update the overall vote. For example, if the user disliked the post,
the vote status of the post (which is stored in the post) would be decremented by fetching the vote
(+1 for like or -1 for dislike) from the users collection. If the post was already liked by a user, and
the same user dislikes it, then it would be decremented by 2 (to undo the like and then dislike). In
contrast, the frontend functionality for this was extremely simple. Furthermore, I also allowed the
user to comment which was very simple on a post and fixed a bug where the border for the post
item did not match the comment input component.

On the 21st, I fixed the styling for comments in the single post page and added community
functionality to the previous community directory menu component. I also implemented a home
feed for unauthenticated users and a homepage for authenticated users. All these functionalities
were not difficult to implement as they are continuations of previous functionalities.

I deployed the site to Vercel on the 22nd after fixing build errors and linting issues, these were very
easy to fix but they had to be located from across the application. I fixed a bug where the user
would not be able to open a post if they were not authenticated and added documentation up to this
point, this was simple to implement by making the user status optional.

In the following days, I worked on general styling for the application, including the user menu, the
navbar, the modals, and the page layout. I refactored code to make it more modular and added

88



Discussion Platform Maruf Bepary

missing input field styling. I also implemented the functionality for the admin to delete the
community image and added a button to take the user back from the create post page to the
corresponding community.

5.2.8 March 2023

In March, several improvements and bug fixes were made to the website. The UI was refined by
adjusting shadows to make the site more legible and improve its overall look. The shadows were
used to provide user feedback on focused elements and highlight the importance of certain actions.
Implementing these changes was straightforward, as the app was already following accessibility
guidelines. Modifications were also made to ensure that the theming of the app was consistent. For
instance, the post link and text form for post creation were adjusted to better align with the app's
overall theme.

Other enhancements included centering the 'view more communities' button for added symmetry,
displaying the user's profile picture in the navbar, and adding a profile modal for users to view
details such as their profile picture, email, and username. These features were relatively easy to
implement, as they mainly involved fetching data already available in the database. The post
creation time display was also updated to show how long ago a post was created rather than the
exact time, making it more user-friendly.

The option for users to edit the current community they are visiting was added if they are the
admin. While updating the privacy type of the community was easy to implement, updating the
community image proved more challenging. This required finding all instances of the current
community in the user's subscribed communities and changing the image. Another improvement
that could be made is verifying if the current user is subscribed to the community before allowing
them to navigate to a private community.

Several bug fixes were also implemented, such as fixing error messages when using third-party
authentication, adding custom toast notifications for user feedback, and fixing a bug where the site
would crash if the post link was invalid. Additionally, the ability to share posts by copying the post
link to the clipboard was added, and a 'not found' page was created to handle invalid pages.

Users were given the ability to update their community, which included changing or deleting their
profile image and changing their username. While these updates were relatively easy to implement,
updating the email address and creating a state to store details about the currently logged-in user
locally could be considered for future implementation.

Towards the end of March, configuring testing proved to be difficult due to unclear documentation

and fragmented resources. Efforts to set up testing and mock data to remove reliance on the real
backend were carried out up to March 31st.

89



Discussion Platform Maruf Bepary

5.3 Self-Evaluation

The purpose of this self evaluation is to reflect on what has been improved since the last time and
what could be improved in the future. The evaluator will use specific examples and evidence to
support their assessment of their strengths and weaknesses. The evaluator will also identify their
goals and action plans for further development and growth.

What can be improved:

e The developer could try to optimize the code more. Even after refactoring the code, it is
mentioned that some components were 300 lines, which could make it difficult to
understand and modify the code.

e The developer could also try to find more efficient ways to implement features. For
example, the voting functionality was extremely difficult to implement despite seeming
easy.

e The developer may consider Supabase as an alternative to Firebase as it is more
appropriate for this project

e The developer could implement better DI/CD pipelines to make the development process
more efficient

What was improved from last time:

e The developer has implemented more features at a high standard compared to the original
Python based prototype

e The current system is much more robust than the original one as it is more stable and has
fewer bugs

e The current system is better designed compared to the original one the components are of
higher quality and the overall layout is better structured

e The overall development was more agile (faster and more flexible)

e The developer has significantly improved their skills in various technologies such as React,
Next.JS, Firebase, and TypeScript.

e The developer has also made the code base more modular and efficient by refactoring the
code.

e The developer has also added several new features such as a page to view all communities,
the option to view all communities in the directory menu, and the ability to create a post
from the home page.

90



Discussion Platform Maruf Bepary

Chapter 6: Project Management

6.1 Risks and Mitigations

There are potential risks that can take place which must be accounted for my implementing
mitigation techniques if it is no possible to avoid the risk entirely. .

Not Finishing on Time

The most likely and serious would be not finishing the project on time. The deadline of the project
is strict hence the product must be delivered on time. This risk must be avoided. The plan was to
allows for extra time in case there are other risk which increase the time of development. There is a
soft deadline 3 weeks before the hard deadline which would allow for extra time in case it is
required. Almost all of the major functionalities have been implemented by now meaning the
project is complete for the most part.

Project not Meeting the Requirements/Scope

Projects can often go off track, especially if the requirements and scope are not clearly defined.
This can lead to wasted time and resources, as well as disappointment from stakeholders. To
mitigate this risk, it is important to have frequent reviews of the project and compare it against the
requirements and scope. This allows for the team to catch any deviations early on and make
necessary adjustments before it becomes a larger problem.

One way to ensure that the project stays on track is by using a Requirements management tool such
as the one built into GitHub and GitLab. This tool allows for the team to clearly define and track
requirements and makes it easier to see when the project deviates from the original plan. Another
way is to have regular check-ins with stakeholders to ensure that the project is still aligned with
their needs and expectations.

It is also important to have a clear and effective communication plan in place. This helps ensure
that everyone is on the same page and that any changes or deviations are discussed and addressed
promptly. Additionally, having a flexible project management approach, such as Agile (which was
followed in this project), can also help mitigate this risk as it allows for changes to be incorporated
easily.

Technical Failures

Technical failures can have a significant impact on the project and its ability to meet its objectives.
When components within the codebase fail, it can lead to unexpected behaviour and errors that can
negatively impact the user experience. To mitigate this risk, it is important to have a robust testing
process in place. This includes incorporating unit testing into the development process to ensure
that each component is thoroughly tested before being integrated into the larger codebase.

Unit testing is a critical aspect of software development that involves writing tests for individual
components or units of code to verify that they work as expected. By conducting unit tests,
developers can catch and fix bugs early in the development process, reducing the risk of technical
failures. Additionally, unit tests serve as a form of documentation and can provide confidence in
making changes to the codebase in the future. Furthermore, user testing was also carried out to
capture any faults in the code that were not captured by unit tests and to receive non-technical
feedback about the project such as design of the system, usability, etc. More on Testing to see how
it helped in this project.

91



Discussion Platform Maruf Bepary

Conducting user testing has also helped in this project. This has allowed users to try out the system
and find any bugs. From the user testing that was carried out, it does not appear there to be any
technical failures in functionality. More on User Testing to understand how it has helped.

Another way to mitigate the risk of technical failures is to implement continuous integration and
continuous deployment (CI/CD) pipelines. CI/CD pipelines automate the testing and deployment
process, reducing the risk of human error and ensuring that the codebase is always in a deployable
state. Furthermore, implementing monitoring and logging can also help identify and fix technical
failures quickly, reducing the risk of downtime and improving the overall stability of the system. In
this project, Vercel (the deployment provider) has carried out build and lint testing automatically
every time there was new code pushed to the repository. This insured that there was a certain level
of quality with the product and that it would function correctly in production.

Breaches

Security breaches are a major concern for any online system that stores sensitive user information.
In the first prototype of this project where the back-end was custom, the risk of a security breach
was mitigated by hashing all passwords and not storing personal information such as names,
addresses, and dates of birth. This means that even if a breach were to occur, the information stored
in the database would not be easily usable for malicious actors.

In the current system based on Firebase, the security and breach protections and mitigations are
handled by Google. Google has a team of security experts who are constantly monitoring the
Firebase infrastructure to prevent security breaches and other security-related incidents.

However, it is still important to implement additional security measures to further reduce the risk of
a security breach. This can include implementing encryption for sensitive data, implementing
access control mechanisms (Firestore Rules) to restrict access to sensitive data, and regularly
conducting security audits to identify potential vulnerabilities in the system. By implementing these
measures, the project can ensure that user data is protected and that the risk of a security breach is
minimized.

Disasters

In case of disasters such as natural calamities, power outages, or other events that can impact the
infrastructure, the current project has several mitigations in place. Firstly, the codebase is stored on
Github and Gitlab, which provide robust version control and disaster recovery capabilities. In case
of data loss or system failure, the codebase can be recovered from these platforms.

Moreover, the backend of the system is handled by Google and its Firebase platform, which has a
proven track record of providing reliable and secure infrastructure. Google has multiple data
centers across the world and employs advanced technologies such as load balancing and automatic
failover to ensure that the system remains available even in case of disasters.

Finally, the front-end of the system is handled by Vercel, which is a well-established platform for
hosting web applications. Vercel has a robust infrastructure that can handle large amounts of traffic
and provides automatic scaling to handle any unexpected spikes in traffic. This means that even in
case of disasters, the system is likely to remain available and accessible to users.

In conclusion, while disasters can pose a risk to any system, the current project has several

mitigations in place to minimize the impact of these events and ensure that the system remains
available and accessible to users even in case of disasters.

92



Discussion Platform Maruf Bepary

Bibliography

[1] StudyBuff. What Is a Discussion Forum? https://studybuff.com/what-is-a-discussion-forum/

[2] Disciple Media. Benefits of Forum. https://www.disciplemedia.com/building-your-
community/benefits-of-forum/

[3] Short Fact. What is the purpose of discussion forums? https://short-fact.com/what-is-the-
purpose-of-discussion-forums/

[4] Listen and Learn Research. Why Do People Use Forums?
https://listenandlearnresearch.com/why-do-people-use-forums/

[5] OpenSource.com. Security, transparency, and open source: Understanding the value of audits.
https://opensource.com/article/21/6/security-transparency

[6] Reputation Defender. Top Five Social Media Privacy Concerns.
https://www.reputationdefender.com/blog/privacy/top-five-social-media-privacy-concerns

[7] FreeCodeCamp How to Maintain an Open Source Project.

[8] Javatpoint. Quora. https://www.javatpoint.com/quora

[9] Quora. Why is Quora's user interface not attractive as compared to that of Facebook? Are
Facebook designers better? https://www.quora.com/Why-i
as-compared-to-that-of-Facebook-Are-Facebook-designers-better

[10] Quora. What data does Quora collect on me? How does Quora use my data?

How-does-Quora-use-my-data

[11] Sethi S, Sharma R. Social media and its role in medical research. J Educ Health Promot.
2019;8:47. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428478/

[12] How-To Geek. What is Discord, and Is It Only for Gamers?
https://www.howtogeek.com/659237/what-is-discord-and-is-it-only-for-gamers/

[13] Codecademy. What is Back End? https://www.codecademy.com/resources/blog/what-is-back-
end/

[14] Cloudflare. Backend-as-a-Service (BaaS).
https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/

[15] GeeksforGeeks. Firebase Introduction. https://www.geeksforgeeks.org/firebase-introduction/
[16] Firebase. Products & Solutions. https:/firebase.google.com/products-build

[17] Cloudflare. Backend-as-a-Service (BaaS).
https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/

[18] Back4app. Firebase Advantages and Disadvantages. https://blog.back4app.com/firebase-
advantages-and-disadvantages/

93


https://studybuff.com/what-is-a-discussion-forum/
https://www.disciplemedia.com/building-your-community/benefits-of-forum/
https://www.disciplemedia.com/building-your-community/benefits-of-forum/
https://short-fact.com/what-is-the-purpose-of-discussion-forums/
https://short-fact.com/what-is-the-purpose-of-discussion-forums/
https://listenandlearnresearch.com/why-do-people-use-forums/
https://opensource.com/article/21/6/security-transparency
https://www.reputationdefender.com/blog/privacy/top-five-social-media-privacy-concerns
https://www.freecodecamp.org/news/how-to-maintain-an-open-source-project/
https://www.javatpoint.com/quora
https://www.quora.com/Why-is-Quoras-user-interface-not-attractive-as-compared-to-that-of-Facebook-Are-Facebook-designers-better
https://www.quora.com/Why-is-Quoras-user-interface-not-attractive-as-compared-to-that-of-Facebook-Are-Facebook-designers-better
https://help.quora.com/hc/en-us/articles/360000839483-What-data-does-Quora-collect-on-me-How-does-Quora-use-my-data
https://help.quora.com/hc/en-us/articles/360000839483-What-data-does-Quora-collect-on-me-How-does-Quora-use-my-data
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428478/
https://www.howtogeek.com/659237/what-is-discord-and-is-it-only-for-gamers/
https://www.codecademy.com/resources/blog/what-is-back-end/
https://www.codecademy.com/resources/blog/what-is-back-end/
https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/
https://www.geeksforgeeks.org/firebase-introduction/
https://firebase.google.com/products-build
https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/
https://blog.back4app.com/firebase-advantages-and-disadvantages/
https://blog.back4app.com/firebase-advantages-and-disadvantages/

Discussion Platform Maruf Bepary

[19] DataVersity. NoSQL Databases: Advantages and Disadvantages.
https://www.dataversity.net/nosql-databases-advantages-and-disadvantages/

[20] PythonBasics. What is Flask? https://pythonbasics.org/what-is-flask-python/

[21] PythonProgrammingLanguage. Python Flask Example.
https://pythonprogramminglanguage.com/python-flask-example/

[22] Allwin Raju. Disadvantages of Flask. https://allwin-raju-12.medium.com/disadvantages-of-
flask-95f1 ff8{83bf

[23] Back4app What are the Benefits of Backend-as-a-Service (BaaS)r>

[24] Clockwise Software. Choice between Mobile Backend-as-a-Service and Custom Backend.
https://clockwise.software/blog/choice-between-mobile-backend-as-a-service-and-custom-backend/

[25] Supabase. Supabase vs Firebase. https://supabase.com/alternatives/supabase-vs-firebase

[26] Blog LogRocket. Firebase vs Supabase: Choosmg the nght Tool for Your Project.

[27] FreeCodeCamp. What is Front End? https://www.freecodecamp.org/news/what-is-front-end-
development/

[28] Wikipedia. React (JavaScript library).
https://en.wikipedia.org/wiki/React (JavaScript library)

[29] C# Corner. What and Why ReactJS? https://www.c-sharpcorner.com/article/what-and-why-
reactjs/

[30] Kinsta. React Components Library: A Comprehensive Guide. https://kinsta.com/blog/react-
components-library/

[31] Koombea. React Pros and Cons: What Are the Advantages and Disadvantages of ReactJS?
https://www.koombea.com/blog/react-pros-and-cons-what-are-the-advantages-and-disadvantages-

of-reactjs/

[32] WithLovelnternet. Chakra Ul vs Material Ul: A Comprehensive Comparison.
https://withloveinternet.com/blog/chakra-ui-vs-material-ui-a-comprehensive-comparison

[33] SourceForge. Material-UI (MUI) Alternatives.
https://sourceforge.net/software/product/Material-UI-MUJI/alternatives

[34] Imaginary Cloud. Next.js vs React: What to Choose in 2021.
https://www.imaginarycloud.com/blog/next-js-vs-react/

[35] Deepti Sharma. What Is State in React? https://medium.com/(@deedee8/what-is-state-in-react-
7e4ba938df23

[36] FreeCodeCamp. How to Manage State in Your React Apps.
https://www.freecodecamp.org/news/how-to-manage-state-in-your-react-apps/

[37] FreeCodeCamp. How to Manage State in React. https://www.freecodecamp.org/news/how-to-
manage-state-in-react/

94


https://www.dataversity.net/nosql-databases-advantages-and-disadvantages/
https://pythonbasics.org/what-is-flask-python/
https://pythonprogramminglanguage.com/python-flask-example/
https://allwin-raju-12.medium.com/disadvantages-of-flask-95f1ff8f83bf
https://allwin-raju-12.medium.com/disadvantages-of-flask-95f1ff8f83bf
https://blog.back4app.com/what-are-the-benefits-baas-backend-as-a-service/
https://clockwise.software/blog/choice-between-mobile-backend-as-a-service-and-custom-backend/
https://blog.logrocket.com/firebase-vs-supabase-choosing-right-tool-project/
https://www.freecodecamp.org/news/what-is-front-end-development/
https://www.freecodecamp.org/news/what-is-front-end-development/
https://en.wikipedia.org/wiki/React_(JavaScript_library)
https://www.c-sharpcorner.com/article/what-and-why-reactjs/
https://www.c-sharpcorner.com/article/what-and-why-reactjs/
https://kinsta.com/blog/react-components-library/
https://kinsta.com/blog/react-components-library/
https://www.koombea.com/blog/react-pros-and-cons-what-are-the-advantages-and-disadvantages-of-reactjs/
https://www.koombea.com/blog/react-pros-and-cons-what-are-the-advantages-and-disadvantages-of-reactjs/
https://withloveinternet.com/blog/chakra-ui-vs-material-ui-a-comprehensive-comparison
https://sourceforge.net/software/product/Material-UI-MUI/alternatives
https://www.imaginarycloud.com/blog/next-js-vs-react/
https://medium.com/@deedee8/what-is-state-in-react-7e4ba938df23
https://medium.com/@deedee8/what-is-state-in-react-7e4ba938df23
https://www.freecodecamp.org/news/how-to-manage-state-in-your-react-apps/
https://www.freecodecamp.org/news/how-to-manage-state-in-react/
https://www.freecodecamp.org/news/how-to-manage-state-in-react/

Discussion Platform Maruf Bepary

[38] Blog.LogRocket. Pitfalls of Overusing React Context. https://blog.logrocket.com/pitfalls-of-
overusing-react-context/

[39] tkDodo. React Query as a State Manager. https://tkdodo.eu/blog/react-query-as-a-state-
manager/

[40] Rahul Phansen. React Context vs Recoil vs Hawk. https://medium.com/@rphansen91/react-

context-vs-recoil-vs-hawk-dfe1be9e8372

[41] OpenReplay. Top 6 React State Management Libraries for 2022.
https://blog.openreplay.com/top-6-react-state-management-libraries-for-2022/

[42] Kinsta. Svelte vs React: Which One to Choose in 20217 https://kinsta.com/blog/svelte-vs-
react/

[43] Cmarix. React vs Svelte: A Comprehensive Comparison Between JavaScript Libraries.

https://www.cmarix.com/blog/react-vs-svelte-a-comprehensive-comparison-between-javascript-
libraries/

[44] Blog.LogRocket. SolidJS vs React: How Do They Compare?
https://blog.logrocket.com/solidjs-vs-react/

[45] Fulcrum Rocks. Vue.js vs React: Which One to Choose in 20217
https:/fulcrum.rocks/blog/vue-vs-react-comparison

[46] Trio. Angular vs React: Which Framework to Choose in 20217
https://www.trio.dev/blog/angular-vs-react

[47] Successive Technologies. Best Database for Web Applications in 2021.
https://successive.tech/blog/best-database-for-web-applications/

[48] Oracle. What Is a Relational Database? https://www.oracle.com/uk/database/what-is-a-

relational-database/

[49] Sage Answer. What Are the Advantages and Disadvantages of Relational Database?
https://sage-answer.com/what-are-the-advantages-and-disadvantages-of-relational-database/

[50] Jelvix. Relational vs Non-Relational Database: What Is the Difference?
https://jelvix.com/blog/relational-vs-non-relational-database

[51] Wikipedia. NoSQL. https://en.wikipedia.org/wiki/NoSQL

[52] Dataversity. NoSQL Databases: Advantages and Disadvantages.
https://www.dataversity.net/nosql-databases-advantages-and-disadvantages/

[53] TDWI. Data Modeling for NoSQL Improves Agile Development.

https://tdwi.org/articles/2017/10/03/ba-all-data-modeling-for-nosql-improves-agile-
development.aspx

[54] Indeed. What Is Project Management Methodology? https://sg.indeed.com/career-
advice/career-development/project-management-methodology

[55] Asana. What Is Agile Methodology? https://asana.com/resources/agile-methodology

[56] Educba. Advantages and Disadvantages of Agile Methodology.
https://www.educba.com/advantages-and-disadvantages-of-agile-methodology/

95


https://blog.logrocket.com/pitfalls-of-overusing-react-context/
https://blog.logrocket.com/pitfalls-of-overusing-react-context/
https://tkdodo.eu/blog/react-query-as-a-state-manager/
https://tkdodo.eu/blog/react-query-as-a-state-manager/
https://medium.com/@rphansen91/react-context-vs-recoil-vs-hawk-dfe1be9e8372
https://medium.com/@rphansen91/react-context-vs-recoil-vs-hawk-dfe1be9e8372
https://blog.openreplay.com/top-6-react-state-management-libraries-for-2022/
https://kinsta.com/blog/svelte-vs-react/
https://kinsta.com/blog/svelte-vs-react/
https://www.cmarix.com/blog/react-vs-svelte-a-comprehensive-comparison-between-javascript-libraries/
https://www.cmarix.com/blog/react-vs-svelte-a-comprehensive-comparison-between-javascript-libraries/
https://blog.logrocket.com/solidjs-vs-react/
https://fulcrum.rocks/blog/vue-vs-react-comparison
https://www.trio.dev/blog/angular-vs-react
https://successive.tech/blog/best-database-for-web-applications/
https://www.oracle.com/uk/database/what-is-a-relational-database/
https://www.oracle.com/uk/database/what-is-a-relational-database/
https://sage-answer.com/what-are-the-advantages-and-disadvantages-of-relational-database/
https://jelvix.com/blog/relational-vs-non-relational-database
https://en.wikipedia.org/wiki/NoSQL
https://www.dataversity.net/nosql-databases-advantages-and-disadvantages/
https://tdwi.org/articles/2017/10/03/ba-all-data-modeling-for-nosql-improves-agile-development.aspx
https://tdwi.org/articles/2017/10/03/ba-all-data-modeling-for-nosql-improves-agile-development.aspx
https://sg.indeed.com/career-advice/career-development/project-management-methodology
https://sg.indeed.com/career-advice/career-development/project-management-methodology
https://asana.com/resources/agile-methodology
https://www.educba.com/advantages-and-disadvantages-of-agile-methodology/

Discussion Platform Maruf Bepary

[57] Forbes. What Is Waterfall Methodology? https://www.forbes.com/advisor/business/what-is-
waterfall-methodology/

[58] IBM. What Is Software Testing? https://www.ibm.com/topics/software-testing
[59] Geekflare. A Guide to Unit Testing. https://geckflare.com/unit-testing-guide/

[60] PythonPool. Python Unittest vs Pytest: A Comparison. https://www.pythonpool.com/python-
unittest-vs-pytest/

[61] Ricardo Cruz. Why I’'m Moving from Jest to Vite—Part 1. https://dev.to/rstacruz/why-im-
moving-from-jest-to-vitest-27d7

[62] MarvelApp. The Importance of User Testing in Design.
https://marvelapp.com/blog/importance-user-testing/

[63] Microsoft Learn. What Is Version Control? https://learn.microsoft.com/en-
us/devops/develop/git/what-is-version-control

[64] Atlassian. Why Git? https://www.atlassian.com/git/tutorials/why-git

[65] Atlassian. Using Branches in Git. https://www.atlassian.com/git/tutorials/using-branches

[66] Atlassian. Git Tag. https://www.atlassian.com/git/tutorials/inspecting-a-repository/git-tag

[67] Atlassian. Comparing Workflows. https://www.atlassian.com/git/tutorials/comparing-
workflows

[68] Git. Git Basics - Working with Remotes. https://git-scm.com/book/en/v2/Git-Basics-Working-
with-Remotes

[69] Indeed. What Is Code Quality? https://www.indeed.com/career-advice/career-
development/what-is-code-quality

[70] MakeUseOf. What Is Linting and How to Use It to Write Better Code.
https://www.makeuseof.com/what-is-linting/

[71] Real Python. How to Write High-Quality Python Code With Automated Testing and Linting.
https://realpython.com/python-code-quality/

[72] SitePoint. A Comparison of JavaScript Linting Tools. https://www.sitepoint.com/comparison-
javascript-linting-tools/

[73] FreeCodeCamp. Software Design. https://www.freecodecamp.org/news/software-design/

[74] Wikipedia. Code Refactoring. https://en.wikipedia.org/wiki/Code_refactoring

[75] CodeDam. How to Create Effective Code Documentation in Software Development.

https://codedamn.com/news/uncategorized/how-to-create-effective-code-documentation-in-
software-development

[76] Shvets, Alexander. Dive Into Design Patterns. https://refactoring.guru/design-patterns/book

[77] GitLab. Issues. https://docs.gitlab.com/ee/user/project/issues/

[78] GitLab. Milestones. https://docs.gitlab.com/ee/user/project/milestones/

96


https://www.forbes.com/advisor/business/what-is-waterfall-methodology/
https://www.forbes.com/advisor/business/what-is-waterfall-methodology/
https://www.ibm.com/topics/software-testing
https://geekflare.com/unit-testing-guide/
https://www.pythonpool.com/python-unittest-vs-pytest/
https://www.pythonpool.com/python-unittest-vs-pytest/
https://dev.to/rstacruz/why-im-moving-from-jest-to-vitest-27d7
https://dev.to/rstacruz/why-im-moving-from-jest-to-vitest-27d7
https://marvelapp.com/blog/importance-user-testing/
https://learn.microsoft.com/en-us/devops/develop/git/what-is-version-control
https://learn.microsoft.com/en-us/devops/develop/git/what-is-version-control
https://www.atlassian.com/git/tutorials/why-git
https://www.atlassian.com/git/tutorials/using-branches
https://www.atlassian.com/git/tutorials/inspecting-a-repository/git-tag
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.indeed.com/career-advice/career-development/what-is-code-quality
https://www.indeed.com/career-advice/career-development/what-is-code-quality
https://www.makeuseof.com/what-is-linting/
https://realpython.com/python-code-quality/
https://www.sitepoint.com/comparison-javascript-linting-tools/
https://www.sitepoint.com/comparison-javascript-linting-tools/
https://www.freecodecamp.org/news/software-design/
https://en.wikipedia.org/wiki/Code_refactoring
https://codedamn.com/news/uncategorized/how-to-create-effective-code-documentation-in-software-development
https://codedamn.com/news/uncategorized/how-to-create-effective-code-documentation-in-software-development
https://refactoring.guru/design-patterns/book
https://docs.gitlab.com/ee/user/project/issues/
https://docs.gitlab.com/ee/user/project/milestones/

Discussion Platform Maruf Bepary

[79] Hostinger. What Is Web Hosting? https://www.hostinger.com/tutorials/what-is-web-hosting/

[80] Elementor. Types of Web Hosting: Which One Is Right for You?
https://elementor.com/blog/types-of-web-hosting/

[81] Vercel. Documentation. https://vercel.com/docs

[82] Better Programming. Compound Component Design Pattern in React.
https://betterprogramming.pub/compound-component-design-pattern-in-react-34b50e32dea0

[83] Developer Way. Higher-Order Components in React: The Hooks Era.
https://www.developerway.com/posts/higher-order-components-in-react-hooks-era

[84] FreeCodeCamp. How to Use Flux in React: An Example.
https://www.freecodecamp.org/news/how-to-use-flux-in-react-example/

[85] BMC. ACID: Atomic, Consistent, Isolated, Durable. https://www.bmc.com/blogs/acid-atomic-
consistent-isolated-durable/

[86] GeeksForGeeks. Functional Dependency. https://www.geeksforgeeks.org/functional-
dependency/

[87] GeeksForGeeks. Second Normal Form (2NF). https://www.geeksforgeeks.org/second-normal-
form-2nf/

[88] GeeksForGeeks. Third Normal Form (3NF). https://www.geeksforgeeks.org/third-normal-
form-3nf/

[89] TechRepubhc How Weak Passwords Could Put Your Organization at R1sk

[90] BBC News. Equifax Data Breach: What You Need to Know.
https://www.bbec.com/news/business-41493494

[91] The Data Privacy Group. Data Breach: The Legal Implications.
https://thedataprivacygroup.com/blog/2019-9-17-data-breach-the-legal-implications/

[92] Brightjourney. Legal and Ethical Responsibility to Safely Store Passwords.
http://www.brightjourney.com/q/legal-ethical-responsibility-safely-store-password

[93] One.com. What Can I Do to Enhance the Security of My One.com Account?
https://help.one.com/hc/en-us/articles/4777447332625-What-can-1-do-to-enhance-the-security-of-

my-one-com-account-

[94] How To Use Shadows And Blur Effects In Modern UI Design,
https://www.smashingmagazine.com/2017/02/shadows-blur-effects-user-interface-design/

[95] Typography in UI Design: An Ultimate Guide for Beginners,
https://www.mockplus.com/blog/post/typography-design-guide

[96] Responsive Design, https://www.interaction-design.org/literature/topics/responsive-design

97


https://www.hostinger.com/tutorials/what-is-web-hosting/
https://elementor.com/blog/types-of-web-hosting/
https://vercel.com/docs
https://betterprogramming.pub/compound-component-design-pattern-in-react-34b50e32dea0
https://www.developerway.com/posts/higher-order-components-in-react-hooks-era
https://www.freecodecamp.org/news/how-to-use-flux-in-react-example/
https://www.bmc.com/blogs/acid-atomic-consistent-isolated-durable/
https://www.bmc.com/blogs/acid-atomic-consistent-isolated-durable/
https://www.geeksforgeeks.org/functional-dependency/
https://www.geeksforgeeks.org/functional-dependency/
https://www.geeksforgeeks.org/second-normal-form-2nf/
https://www.geeksforgeeks.org/second-normal-form-2nf/
https://www.geeksforgeeks.org/third-normal-form-3nf/
https://www.geeksforgeeks.org/third-normal-form-3nf/
https://www.techrepublic.com/article/how-weak-passwords-could-put-your-organization-at-risk/
https://www.bbc.com/news/business-41493494
https://thedataprivacygroup.com/blog/2019-9-17-data-breach-the-legal-implications/
http://www.brightjourney.com/q/legal-ethical-responsibility-safely-store-password
https://help.one.com/hc/en-us/articles/4777447332625-What-can-I-do-to-enhance-the-security-of-my-one-com-account-
https://help.one.com/hc/en-us/articles/4777447332625-What-can-I-do-to-enhance-the-security-of-my-one-com-account-
https://www.smashingmagazine.com/2017/02/shadows-blur-effects-user-interface-design/
https://www.mockplus.com/blog/post/typography-design-guide
https://www.interaction-design.org/literature/topics/responsive-design

Discussion Platform Maruf Bepary

Appendix

Deployed system: https://circus-discussion.vercel.app/

Video demostration for the system: https://youtu.be/MWdOcO6wVQU

Video demostration for testing the system: https://youtu.be/BlijOWXDiQw

Project repository: https://gitlab.cim.rhul.ac.uk/zjac268/next discussion_platform
Set up instructions: https://gitlab.cim.rhul.ac.uk/zjac268/next discussion_platform/-
/wikis/Installation

98


https://circus-discussion.vercel.app/
https://youtu.be/MWdOcO6wVQU
https://youtu.be/BIijOWXDiQw
https://gitlab.cim.rhul.ac.uk/zjac268/next_discussion_platform
https://gitlab.cim.rhul.ac.uk/zjac268/next_discussion_platform/-/wikis/Installation
https://gitlab.cim.rhul.ac.uk/zjac268/next_discussion_platform/-/wikis/Installation

